

SECOND FIVE-YEAR REVIEW REPORT FOR ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE ALLEGAN AND KALAMAZOO COUNTIES, MICHIGAN

Prepared by

U.S. Environmental Protection Agency Region V Chicago, Illinois

OCTOBER 2012

Approved by:	Date:
Ruhil CKIL	10-18-12
Richard C. Karl, Director	

Superfund Division

TABLE OF CONTENTS

List	of Ac	cronyms	6
Exe	cutive	e Summary	7
Five	e-Yeaı	r Review Summary Form	9
۱.		oduction	
 }.		Chronology	
''. .		kground	
111.			
	A.	Site History	1/
	B.	Operable Units	20
	B.1	1. Operable Unit 1	
		Physical Characteristics	
		Land and Resource Use	
		History of Contamination	
		Response Activities	
		Basis for Taking Action	23
	В.2	2. Operable Unit 2	24
		Physical Characteristics	24
		Land and Resource Use	24
		History of Contamination	25
		Response Activities	25
		Basis for Taking Action	26
	В.	3. Operable Unit 3	
		Physical Characteristics	
		Land and Resource Use	
		History of Contamination	
		Response Activities	
		Basis for Taking Action	29
	В.4	4. Operable Unit 4	31
		Physical Characteristics	
		Land and Resource Use	
		History of Contamination	32
		Response Activities	32
		Basis for Taking Action	32
	В.	5. Operable Unit 5	
		Physical Characteristics	
		Land and Resource Use	
		History of Contamination	34
		Response Activities	35
		Basis for Taking Action	

	B.6.	Operable Unit 7	
		Physical Characteristics	
		Land and Resource Use	
		History of Contamination	
		Response Activites	
		Basis for Taking Action	. 38
IV.	Reme	edial Actions	. 39
	A.	Operable Unit 2	
		Remedy Selection	
		Remedy Implementation	
		Institutional Controls	40
	B.	Operable Unit 3	
		Remedy Selection	
		Remedy Implementation	. 42
		Institutional Controls	. 43
		System Operations and O&M Costs	. 46
	C.	Operable Unit 4	. 47
		Remedy Selection	. 47
		Remedy Implementation	. 48
		Institutional Controls	. 48
٧.	Prog	ress Since the Last Review	. 49
VI.	Five-	Year Review Process	. 53
		Administrative Components of the Five-Year Review Process	. 53
		Community Notification and Involvement	
		Document Review	
		Data Review	
		Site Inspection	
\/II	Took	•	
VII.	recn	nical Assessment	. 56
	A.	Operable Unit 2	56
		Question A: Is the remedy functioning as intended by the decision documents?	
		Question B: Are the exposure assumptions, toxicity data, cleanup levels,	
		and remedial action objectives used at the time of remedy selection still valid?	. 57
		Question C: Has any other information come to light that could call into quest	
		the protectiveness of the remedy?	. 57
	В.	Operable Unit 3	57
		Question A: Is the remedy functioning as intended by the decision documents?	
		Question B: Are the exposure assumptions, toxicity data, cleanup levels,	
		and remedial action objectives used at the time of remedy selection still valid?	58
		Question C: Has any other information come to light that could call into quest	ios
		the protectiveness of the remedy?	<i>1011</i> 50
		t	

	C.	Operable Unit 4
\ /!!!	1	
		ues
IX.	Red	commendations and Follow-Up Actions61
Χ.	Pro	tectiveness Statements 62
XI.	Nex	kt Review63
Tabl	es	
Table Table Table Table Table Table Table	e 2: e 3: e 4: e 5: e 6: e 7: e 8: e 9:	Chronology of Site Events Institutional Controls Summary for OU2 Institutional Controls Summary for OU3 Institutional Controls Summary for OU4 Actions Taken at OU3 Since the Last Five-Year Review Actions Taken at OU4 Since the Last Five-Year Review Issues Identified at OU3 Issues Identified at OU4 Recommendations and Follow-up Actions for OU3 Recommendations and Follow-up Actions for OU4
Atta	chm	nents
Attac	Figu Figu Figu Figu Figu Figu Figu	ent 1 Site Maps (Figures 1- 11) are 1 Site Location Map are 2 OU1 Location Map are 3: OU1 Site Plan are 4: OU2 Location Map are 5: OU2 Site Plan are 6: OU3 Location Map are 7: OU3 Site Plan are 8: OU4 Location Map are 9: OU4 Site Plan are 10: OU5 Site Map are 11: OU7 Location Map
Attac	hme Atta	nt 2: Post-Closure Monitoring Groundwater Sample Results 2007-2012

Attachment 2A: OU3 Results Attachment 2B: OU4 Results

Attachment 3: Photos Documenting Site Conditions

Attachment 3A: Inspection Photos from King Highway Landfill – OU3

Attachment 3B: Inspection Photos from Willow Boulevard/A-Site Landfill – OU2

Attachment 3C: Inspection Photos from 12th Street Landfill – OU4

Attachment 4: Site Inspection Report

Attachment 5: Restrictive Covenant for OU2

Attachment 6: Restrictive Covenant for OU4

Attachment 7: Restrictive Covenant for OU7

Appendices

Appendix A Newspaper Public Notices

Appendix B List of Documents Reviewed for the Five-Year Review

Appendix C List of Data Reviewed for the Five-Year Review

LIST OF ACRONYMS

AOC Administrative Order on Consent

BRA Baseline Risk Assessment

BERA Baseline Ecological Risk Assessment

CD Consent Decree

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

C.F.R. Code of Federal Regulations

EPA U.S. Environmental Protection Agency **FRDL** Former Residual Dewatering Lagoons

FS Feasibility Study

GSI Groundwater Surface Water Interface
HHRA Human Health Risk Assessment
HRDL Historic Residual Dewatering Lagoon

ICs Institutional Controls

KRSG Kalamazoo River Study Group KSSS King Street Storm Sewer

MDEQMichigan Department of Environmental QualityMDNRMichigan Department of Natural ResourcesMDOTMichigan Department of Transportation

mg/kg Milligrams per Kilogram

NCP National Oil and Hazardous Substances Pollution Contingency Plan

NREPA Environmental Remediation, of the Natural Resources and Environmental Protection Act,

1994PA 451

NPL National Priorities List
O&M Operation & Maintenance

OU Operable Unit

PCBs Polychlorinated Biphenyls

ppm Parts per Million

PRP Potentially Responsible Party RAOs Remedial Action Objectives

RA Remedial Action
RD Remedial Design

RD/RA Remedial Design/Remedial Action

RI Remedial Investigation

RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision

RPM Remedial Project Manager

Site Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site

SMOA Superfund Memorandum of Agreement SVOCs Semi-Volatile Organic Compounds

TBERA Terrestrial Baseline Ecological Risk Assessment

ug/L Micrograms per Liter

UU/UE Unlimited Use and Unrestricted Exposure

VOCs Volatile Organic Compounds

EXECUTIVE SUMMARY

The Allied Paper Inc./Portage Creek/Kalamazoo River Superfund site (Site) is located in Allegan and Kalamazoo Counties, Michigan. The Site includes disposal areas, paper mill properties, approximately 80 miles of the Kalamazoo River (from Morrow Dam to Lake Michigan), adjacent river banks and contiguous floodplains, as well as a 3-mile stretch of Portage Creek. The U.S. Environmental Protection Agency (EPA) has identified six operable units (OUs) for response action at the Site including:

- OU1 Allied Paper, Inc./Bryant Mill Pond;
- OU2 Willow Boulevard/A-Site Landfill;
- OU3 King Highway Landfill;
- OU4 12th Street Landfill;
- OU5 80-miles of the Kalamazoo River including a 3-mile stretch of Portage Creek; and
- OU7 Former Plainwell Paper Mill Property.

The Site currently does not have an operable unit 6. If source investigation activities at any of the remaining paper mill properties (the former Allied Paper Company Monarch Mill property, portions of the former Allied Paper Company Bryant Mill property, and the former Allied Paper Company King Mill property and King Street Storm Sewer area) results in a determination that a specific paper mill property is a source of contamination at the Site, EPA will designate that (those) paper mill property (properties) as OU6. On June 30, 2009, EPA approved Georgia-Pacific's Source Investigation Report that documents the Georgia-Pacific Corporation Kalamazoo Mill and former Hawthorne Mill property is not a source of contamination at the Site. The investigation of the remaining three mill properties listed above has not yet begun.

This is the second five-year review for the Site. The triggering action for this statutory review is the completion of the first five-year review on October 18, 2007. This second five-year review report includes a protectiveness determination for OU2, OU3, and OU4. This report does not include a protectiveness determination for OU1, OU5, or OU7 because remedial action (RA) work has not yet started at those OUs. However, all six OUs are discussed in this site-wide five-year review report and any future remedies at OU1, OU5 and OU7 will be reviewed on the same five-year review schedule.

The remedy at OU2 is expected to be protective of human health and the environment upon completion of the remedy, and in the interim, exposure pathways that could result in unacceptable risks are being controlled. The RA for OU2 began in April 2011 and is expected to be completed in 2013. During 2011, the waste at the Willow Boulevard Landfill portion of OU2 was consolidated and covered with an impermeable cap. The vegetated soil cover for this portion of OU2 was installed in 2012. EPA expects the installation of the impermeable cover at the A-Site portion of OU2 to be completed in 2012 and the installation of the OU2-wide groundwater monitoring system to be completed in 2013. Institutional controls restricting the use of site groundwater, site use, and for protection of the remedy were recorded and filed in 2010. Once the RA is completed EPA expects the remedy at OU2 to be protective of human health and the environment. EPA will make that determination by inspecting the landfill cover and evaluating groundwater and methane monitoring data. In addition, there is a restrictive covenant in place that restricts certain use of the property including use that interferes with

measures necessary to assure the effectiveness and integrity of the remedial action and use of site groundwater.

The remedy at OU3 currently protects human health and the environment in the short term. The landfill cap is generally in good condition and prevents PCB-contaminated material in the landfill from migrating, via erosion or surface water runoff, into the Kalamazoo River. The cap is also an effective barrier that prevents exposure, via direct contact, to the contaminated material by on-site workers, trespassers, and anglers. The cap also minimizes infiltration of rainwater and reduces the potential for leachate generation and the potential for polychlorinated biphenyls (PCBs) in groundwater to migrate into the Kalamazoo River. Public access to the landfill is restricted by a locked chain-link fence and sheet pile, which prevents people from being exposed to the contaminated material. Methane generated within the landfill is passively managed and mitigated by gas collection trenches installed outside of the landfill. These trenches are largely effective with methane only occasionally detected at off-site probes beyond the lateral extent of the trenches. Additional trenching (or some alternative) may need to be installed to extend the lateral capture of methane migration at the OU3 boundary. Some institutional controls (ICs) are in place at OU3, but require revision, while other ICs are not yet in place. In order for the remedy to be protective in the long term, the following actions will need to be taken: (1) implement revised and new ICs; (2) mitigate any off-site migration of methane gas, and (3) properly maintain the landfill. Long-term protectiveness requires compliance with effective ICs. EPA will ensure that long-term stewardship of OU3, as well as every other operable unit of the Site, includes implementation and maintenance of each component of the selected remedy, including any necessary ICs, and proper maintenance of the landfill.

The remedy at OU4 currently protects human health and the environment in the short term. The remedy has been constructed, and exposure pathways that could result in unacceptable risks are being controlled. The following issues need to be addressed as part of operation and maintenance (O&M) at OU4: 1) erosion is occurring at the toe of the landfill where water exits the soil cover drainage feature, and 2) the current access controls do not prevent trespass. Weyerhaeuser, a potentially responsible party (PRP) for OU4, will evaluate additional access controls. Evaluation of groundwater monitoring data will continue until sufficient data is available to determine contaminant trends. Long-term protectiveness requires compliance with existing ICs. Since the last five-year review, the ICs at OU4 have been modified to include a groundwater use prohibition. EPA will ensure that long-term stewardship of OU4, as well as every other operable unit of the Site, includes implementation and maintenance of each component of the selected remedy, including any necessary ICs.

Five Year Review Summary Form

SITE IDENTIFICATION

Site Name: Allied Paper, Inc./Portage Creek/Kalamazoo River

EPA ID: MID006007306

Region: 5 | State: MI | City/County: Allegan and Kalamazoo Counties

SITE STATUS

NPL Status: Final

Multiple OUs? | Has the site achieved construction completion?

Yes No

REVIEW STATUS

Lead agency: EPA

Author name (Federal or State Project Manager): James Saric

Author affiliation: EPA

Review period: 02/23/2012 – October 2012

Date of site inspection: August 7, 2012

Type of review: Statutory

Review number: 2

Triggering action date: 10/18/2007

Due date (five years after triggering action date): 10/18/2012

Five-Year Review Summary Form (continued)

Issues/Recommendations

OU(s) without Issues/Recommendations Identified in the Five-Year Review:
OU2

Issues and Recommendations Identified in the Five-Year Review:

OU(s): 3	Issue Category: Institutional Controls			
	Effective ICs are needed on all site properties and need to be monitored and maintained. Institutional controls are needed for the landfill property and the land located within the site security fence that is currently owned by MDOT and the City of Kalamazoo. Additionally, MDEQ will not approve the Final Completion of Construction Report and the Final O&M Plan until the MDOT and City of Kalamazoo property ownership issues are resolved. Until these reports are approved, MDEQ cannot issue a Certification of Completion of Construction for the landfill and without this certification, under the terms of the agreement between MDEQ and Georgia-Pacific, the appropriate restrictive covenants cannot be recorded with the Kalamazoo County Register of Deeds.			
	respect to the MDOT	on: EQ and EPA for 1) re and City of Kalamaz ruction Report and th	oo properties, 2) fina	alizing the Final
Affect Current Protectiveness	Affect Future Protectiveness	Implementing Party	Oversight Party	Milestone Date
No	Yes	PRP	State/EPA	October 2013

OU(s): 3	Issue Category: Remedy Performance Issue: Methane gas has migrated off-site in concentrations that exceed threshold criteria and will need to be mitigated.			
	Affect Current Protectiveness	Affect Future Protectiveness	Implementing Party	Oversight Party
No	Yes	PRP	State/EPA	October 2013

OU(s): 4	Issue Category: Site Access/Security			
	Issue: Access controls are inadequate. A chain-link fence is present along the south side of the landfill but there is no fence on the north, east, or west sides of the landfill. Trespassers and anglers can freely enter the property and use the river banks to fish and have access to the landfill cap and associated gas vents. Additionally, the fence on the southern side of the landfill does not restrict foot traffic. The current access configuration does not prevent vandals from damaging the remedy.			
		of access controls al (i.e., wildlife viewing		
Affect Current Affect Future Implementing Oversight Protectiveness Party Party				Milestone Date
No	Yes	PRP	EPA/State	December 2012

OU(s): 4	Issue Category: Operations and Maintenance			
Issue: Ongoing erosion at the toe of the landfill over the area.				r collection discharge
Recommendation: Repair or reconstruct drainage feature at toe of landfill.			toe of landfill.	
Affect Current Protectiveness	Affect Future Protectiveness	Implementing Party	Oversight Party	Milestone Date
No	Yes	PRP	EPA/State	October 2013

Protectiveness Statement(s)

Operable Unit:

Protectiveness Determination:

2

Will be Protective

Protectiveness Statement:

The remedy at OU2 is expected to be protective of human health and the environment upon completion of the remedy, and in the interim, exposure pathways that could result in unacceptable risks are being controlled. The RA for OU2 began in April 2011 and is expected to be completed in 2013. During 2011, the waste at the Willow Boulevard Landfill portion of OU2 was consolidated and covered with an impermeable cap. The vegetated soil cover for this portion of OU2 was installed in 2012. EPA expects the installation of the impermeable cover at the A-Site portion of OU2 to be completed in 2012 and the installation of the OU2-wide groundwater monitoring system to be completed in 2013. Institutional controls restricting the use of site groundwater, site use, and for protection of the remedy were recorded and filed in 2010. Once the RA is completed EPA expects the remedy at OU2 to be protective of human health and the environment. EPA will make that determination by inspecting the landfill cover and evaluating groundwater and methane monitoring data. In addition, there is a restrictive covenant in place that restricts certain use of the property including use that interferes with measures necessary to assure the effectiveness and integrity of the remedial action and use of site groundwater.

Operable Unit: Protectiveness Determination:

Short-term Protective

Protectiveness Statement:

The remedy at OU3 currently protects human health and the environment in the short term. The landfill cap is generally in good condition and prevents PCB-contaminated material in the landfill from migrating, via erosion or surface water runoff, into the Kalamazoo River. The cap is also an effective barrier that prevents exposure, via direct contact, to the contaminated material by on-site workers, trespassers, and anglers. The cap also minimizes infiltration of rainwater and reduces the potential for leachate generation and the potential for PCBs in groundwater to migrate into the Kalamazoo River. Public access to the landfill is restricted by a locked chain-link fence and sheet pile, which prevents people from being exposed to the contaminated material. Methane generated within the landfill is passively managed and mitigated by gas collection trenches installed outside of the landfill. These trenches are largely effective with methane only occasionally detected at off-site probes beyond the lateral extent of the trenches. Additional trenching (or some alternative) may need to be installed to extend the lateral capture of methane migration at the OU3 boundary. Some ICs are in place at OU3, but require revision, while other ICs are not yet in place. In order for the remedy to be protective in the long term, the following actions will need to be taken: (1) implement revised and new ICs; (2) mitigate any off-site migration of methane gas, and (3) properly maintain the landfill. Long-term protectiveness requires compliance with effective ICs. EPA will ensure that long-term stewardship of OU3, as well as every other operable unit of the Site, includes implementation and maintenance of each component of the selected remedy. including any necessary ICs, and proper maintenance of the landfill.

Operable Unit:

Protectiveness Determination:

Short-term Protective

Protectiveness Statement:

The remedy at OU4 currently protects human health and the environment in the short term. The remedy has been constructed, and exposure pathways that could result in unacceptable risks are being controlled. The following issues need to be addressed as part of O&M at OU4: 1) erosion is occurring at the toe of the landfill where water exits the soil cover drainage feature, and 2) the current access controls do not prevent trespass. Weyerhaeuser, a PRP for OU4, will evaluate additional access controls. Evaluation of groundwater monitoring data will continue until sufficient data is available to determine contaminant trends. Long-term protectiveness requires compliance with existing ICs. Since the last five-year review, the ICs at OU4 have been modified to include a groundwater use prohibition. EPA will ensure that long-term stewardship of OU4, as well as every other operable unit of the Site, includes implementation and maintenance of each component of the selected remedy, including any necessary ICs.

Five-Year Review Report

I. Introduction

EPA has conducted a five-year review of the remedial actions implemented at the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site. The Michigan Department of Environmental Quality (MDEQ) assisted EPA in providing an analysis of information in support of this five-year review. The five-year review was conducted from February 2012 through October 2012, and is the second five-year review conducted at this Site. This report documents the results of the review.

The purpose of five-year reviews is to determine whether the remedial actions that have allowed hazardous substances, pollutants or contaminants to remain at a site are protective of human health and the environment. The methods, findings, and conclusions of reviews are documented in five-year review reports. In addition, five-year review reports identify issues found during the review, if any, and recommendations to address them.

This review is required by statute. EPA must implement five-year reviews consistent with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). CERCLA §121(c), as amended, states:

If the President selects a remedial action that results in any hazardous substances, pollutants, or contaminants remaining at the site, the President shall review such remedial action no less often than each five years after the initiation of such remedial action to assure that human health and the environment are being protected by the remedial action being implemented. In addition, if upon such review it is the judgment of the President that action is appropriate at such site in accordance with section [104] or [106], the President shall take or require such action. The President shall report to the Congress a list of facilities for which such review is required, the results of all such reviews, and any actions taken as a result of such reviews.

EPA interpreted this requirement further in the NCP; 40 C.F.R. §300.430(f)(4)(ii) states:

If a remedial action is selected that results in hazardous substances, pollutants, or contaminants remaining at the site above levels that allow for unlimited use and unrestricted exposure, the lead agency shall review such action no less often than every five years after the initiation of the selected remedial action.

This is the second five-year review for the Allied Paper, Inc./Portage Creek/Kalamazoo River Site. The triggering action for this statutory review is the completion of the first five-year review on October 18, 2007. This five-year review is required due to the fact that the remedial actions for OU2, OU3, and OU4 leave hazardous substances, pollutants, or contaminants on site at levels

that do not allow for unlimited use and unrestricted exposure (UU/UE).

The Site consists of six OUs including:

- OU1 Allied Paper, Inc./Bryant Mill Pond;
- OU2 Willow Boulevard/A-Site Landfill;
- OU3 King Highway Landfill;
- OU4 12th Street Landfill;
- OU5 80-miles of the Kalamazoo River including a 3-mile stretch of Portage Creek; and
- OU7 Former Plainwell Paper Mill Property.

The Site currently does not have an operable unit 6. If source investigation activities at any of the remaining paper mill properties (the former Allied Paper Company Monarch Mill [Monarch Mill property], portions of the former Allied Paper Company Bryant Mill [Bryant Mill property], and the former Allied Paper Company King Mill and King Street Storm Sewer area [King Mill property]) results in a determination that a specific paper mill property is a source of contamination at the Site, EPA will designate that (those) paper mill property (properties) as OU6. On June 30, 2009, EPA approved Georgia-Pacific's Source Investigation Report that documents the Georgia-Pacific Corporation Kalamazoo Mill and former Hawthorne Mill [Hawthorne Mill property] is not a source of contamination at the Site. The investigation of the three remaining mill properties listed above has not yet begun.

All OUs are in various stages of the Superfund cleanup process. OU1, OU5, and OU7 are in the Remedial Investigation/Feasibility Study (RI/FS) stage. A Record of Decision (ROD) containing the selected cleanup remedy has been issued for OU2, OU3, and OU4. The remedial action was completed at OU3 and OU4 and is underway at OU2. EPA's five-year review guidance requires remedies to be evaluated for protectiveness at only those OUs where on-site construction of the RA has started (i.e., OU2, OU3, and OU4 at this Site). However, all six OUs are discussed in this site-wide five-year review report; background information on OU1, OU5 and OU7 is included to help the reader better understand the nature and extent of the contamination at the Site in general. Any future remedies at OU1, OU5, and OU7 will be reviewed on the same five-year review schedule.

II. Site Chronology

Table 1 below lists the chronology of events for the Allied Paper, Inc./Portage Creek/Kalamazoo River Site.

Table I: Chronology of Site Events

Month/Year	Events and Milestones	
April 1970-1971	Initial discovery of problem or contamination	
August 30, 1990	EPA placed Site on the National Priorities List (NPL)	
December 1990	Administrative agreement signed between the Michigan Department of Natural Resources (MDNR) and certain PRPs for RI/FS work at the Site	
July 1993	RI/FS start at OU4	
July/September 1994	RI/FS complete at OU3	
July 1997	RI/FS complete at OU4	
February 1998	ROD issued by MDEQ (successor to MDNR) for OU3, with EPA concurrence	
June 1998	122(h) cash-out agreement signed between EPA and Millennium Holdings for Time-Critical Removal Action at Bryant Mill Pond of OU1	
June 1998	Remedial Design (RD) Start at OU3	
1998-1999	Removal Action at Bryant Mill Pond of OUI	
February 2000	Administrative agreement signed between MDEQ and Georgia- Pacific for implementation of the Remedial Design/Remedial Action (RD/RA) at OU3	
September 2001	ROD Issued by MDEQ for OU4, with EPA concurrence	
January/February 2002	Site-Specific Amendment to 2002 Superfund Memorandum of Agreement(SMOA) signed between EPA and MDEQ	
September 2002 Remedial Design complete at OU3		
October 2002	Construction Start at OU3	
December 2004	Consent Decree (CD) signed by the United States and Weyerhaeuser Company for RD/RA at OU4 and for RI/FS and RD/RA at OU7	
January 2006	RI/FS complete at OU2	
September 2006	ROD issued by EPA for OU2, with MDEQ concurrence	
February 2007	Administrative Order on Consent (AOC) signed for Time-Criti Removal Action at Plainwell Impoundment Area of OU5	
February 2007 AOC signed for Supplemental RI/FS for OU5		
March 2007	Removal Action start at Plainwell Impoundment Area of OU5	
February 2007	OU5 Area 1 Supplemental RI/FS initiated	
November 2007 Emergency Response Action for Former Plainwell Mi (OU7) banks start		

March 2008	OU1 RI approved by EPA	
May 2008	RI start at OU7	
November 2008	Emergency Response Action for OU7 completed	
May 2009	CD signed by the United States and Georgia-Pacific for RD/RA at OU2	
June 2009	Removal Action at Plainwell Impoundment of OU5 complete	
June 2009	AOC signed for Time-Critical Removal Action at Plainwell 2 Dam Impoundment of OU5	
August 2009	Removal Action start at Plainwell 2 Dam Impoundment of OU5	
March 2010	RD complete at OU 4	
April 2010	Remedial Action construction start at OU4	
December 2010	Removal Action complete at Plainwell Dam Impoundment in Arc 1 of OU 5	
December 2010	Supplemental RI/FS start in Area 2 of OU 5	
April 2011	Remedial Design complete at OU2	
April 2011	Remedial Action start at OU 2	
July 2011	Action Memorandum signed to conduct Time-Critical Removal Action at Portage Creek Area of OU 5	
September 2011	Removal Action construction start at Portage Creek of OU 5	
May 2012	Supplemental RI/FS start in Area 3 of OU 5	
October 2012	Remedial Action completion at OU4	

III. Background

A. Site History

The Site is located in both Allegan and Kalamazoo Counties of Michigan. The Site includes disposal areas, paper mill properties, approximately 80 miles of the Kalamazoo River (from Morrow Lake Dam to Lake Michigan), adjacent river banks and floodplains, as well as a 3-mile stretch of Portage Creek (see Figure 1, Site Location Map). EPA placed the Site on the National Priorities List on August 30, 1990.

The Site is primarily contaminated with PCBs from former paper mills, although other former industrial operations also used PCBs along the Kalamazoo River. The former paper mills recycled and/or de-inked and repulped carbonless copy waste paper which, between the 1950s and 1970s, contained PCBs as an ink carrier. The wastewater from the paper manufacturing

operations was historically discharged to the Kalamazoo River. Processed residuals were placed into on-site lagoons for dewatering or into disposal areas directly on the land. The former lagoons and disposal areas later became known as the landfill OUs.

The MDNR (predecessor to MDEQ) first became concerned about the presence of PCBs in the Kalamazoo River in 1971, after routine surface water and biota sampling at the mouth of the river indicated that PCBs were discharging to Lake Michigan via the Kalamazoo River and that the PCBs were widely bioavailable for uptake by fish and aquatic organisms.

The Site comprises six OUs:

- OU1 Allied Paper, Inc./Bryant Mill Pond;
- OU2 Willow Boulevard/A-Site Landfill;
- OU3 King Highway Landfill;
- OU4 12th Street Landfill;
- OU5 80-miles of the Kalamazoo River including a 3-mile stretch of Portage Creek; and
- OU7 former Plainwell Paper Mill Property.

In addition to OU7, four other former paper mill properties (the Monarch, Bryant, King, and Hawthorne Mill properties) were associated with the Superfund site. Pursuant to the AOC for a Supplemental RI/FS for OU5 executed between certain PRPs and EPA in February 2007, these four former paper mill properties are to be investigated to determine whether any of the mill properties is a source of PCBs to the Site. If any mill property is a source of PCBs to the Site, then EPA will designate that mill property as OU6. The OU will then be investigated under the Superfund RI/FS process. The Hawthorne Mill property has been investigated and EPA determined that it is not a source of contamination to the Site. Accordingly, EPA has determined that no additional investigation of the Hawthorne Mill property is required for the Site.

Six former hydroelectric dams, three owned by the State of Michigan and three by private companies, are also located within the Superfund Site. One of the dams, the Lake Allegan Dam, is an operating hydropower dam; the remaining five dams are no longer operational. In the 1970s, the State of Michigan partially dismantled its three dams (Plainwell, Otsego and Otsego City). As the state dismantled the dams, the water level in the river dropped and the contaminated sediment that was once underwater became exposed on the riverbanks and floodplain areas behind the state-owned dams. EPA and MDEQ currently estimate that the Site contains approximately 113,000 lbs of PCBs in the river sediment and floodplain soil.

When the Site was listed on the NPL in 1990, it was designated a state-lead site for purposes of conducting the RI/FS. On December 28, 1990, MDNR signed an administrative agreement with several PRPs, pursuant to which the PRPs agreed to perform an RI/FS for the entire Site. Three PRPs signed the administrative agreement with MDNR, including Millennium Holdings LLC (formerly HM Holdings), Georgia-Pacific LLC (formerly known as Georgia-Pacific Corporation), and Plainwell Inc. (formerly Simpson Plainwell Paper Company). (Plainwell Inc. and Millennium Holdings LLC later filed for bankruptcy.) These three PRPs formed a group and

were collectively known as the Kalamazoo River Study Group (KRSG). Although not officially identified as a PRP by the State of Michigan, the Fort James Corporation joined the KRSG and agreed to help fund the RI/FS for the Site. EPA later identified another PRP, the Weyerhaeuser Company, in 2002.

In 1998, EPA signed a cash-out agreement with Millennium Holdings LLC for a time-critical removal action at the Bryant Mill Pond area of OU1. EPA conducted the time-critical removal action using the funds from the cash out agreement and supplemental federal funds. The removal action is discussed in more detail in Section III.B.1 of this five-year review report.

In 2002, certain areas of the Site were re-designated as federal-lead due to the agencies' belief that re-designation of certain areas of the Site was in the best interest of the public. Roles and responsibilities for each OU are outlined in a February 2002 Site-Specific Amendment to the Enforcement Agreement for State-Enforcement Lead Sites in Michigan, under the Superfund Memorandum of Agreement between MDEQ and EPA. Since 2002, EPA has been the lead agency on all OUs except OU3 (King Highway Landfill); MDEQ has retained the lead on OU3. In accordance with an April 2007 Site-Specific Amendment to the 2002 Site-Specific Amendment to the SMOA, EPA acquired the lead for OU1 (Allied Paper, Inc./Bryant Mill Pond) in 2008 after EPA accepted the state-approved RI Report and determined that no additional response activities were necessary to complete the RI.

In 2007 an AOC was signed between Georgia-Pacific LLC, Millennium Holdings LLC, MDEQ and EPA to implement a time-critical removal action in the Plainwell dam area of the Kalamazoo River in OU5. Work began in March 2007 and was completed in June 2009. A total of 130,000 cubic yards of contaminated in-stream and bank sediment were removed by this action.

In 2007 another AOC was signed between Georgia-Pacific LLC, Millennium Holdings LLC and EPA to conduct a Supplemental RI/FS for OU5, which includes the Kalamazoo River and Portage Creek from Morrow Dam to the confluence of Lake Michigan. OU5 consists of seven discreet areas, each requiring its own supplemental RI/FS.

On January 6, 2009, Lyondell Chemical Company and 79 affiliated debtors filed for bankruptcy under Chapter 11 reorganization. One of the debtors was Millennium Holdings, LLC. In January 2009, Millennium Holdings ceased all work at the Site. On April 23, 2010, the U.S. Bankruptcy Court approved Lyondell's reorganization plan. EPA received approximately \$100 million (of its court-approved claim of more than \$900 million) to be used at the Site from the U.S.'s settlement with the debtors in the bankruptcy action. Georgia-Pacific continues addressing its obligations to complete the supplemental RI/FS according to the 2007 AOC.

In June 2009, Georgia-Pacific LLC and EPA entered into an AOC to conduct a time-critical removal action in the Plainwell 2 Dam area of OU5. This removal project began in August 2009 and was completed in December 2010. Approximately 18,000 cubic yards of soil and debris were removed by this action.

In July 2011, EPA issued an Action Memorandum to complete a time-critical removal action along Portage Creek, in a 1.8-mile stretch immediately downstream of OU1 to the confluence of the Kalamazoo River. The removal work began in September 2011 and will take two to four years to complete. EPA anticipates that this project will remove approximately 17,000 cubic yards of contaminated soil and sediment.

B. Operable Units

B.1. Operable Unit 1

Physical Characteristics

The Allied Paper Inc./Bryant Mill Pond (OU1) encompasses 89 acres along Portage Creek in the City of Kalamazoo in Kalamazoo County, Michigan. OU1 is bordered by Cork Street to the south, Alcott Street to the north, a Conrail Railroad line to the west, and residential/commercial properties to the east (see Figure 2, OU1 Location Map).

Land and Resource Use

According to the MDEQ RI Report, OU1 and areas in the vicinity of OU1 are zoned for industrial, commercial, and residential purposes. Industrial and commercial properties are located to the north and south of OU1 and along portions of the east and west sides of OU1. Residential properties are located along a portion of the east side of OU1 and to the west beyond the railroad tracks. OU1 is an inactive disposal area, but groundwater is being collected along collection sumps and treated prior to being discharged to the City of Kalamazoo Wastewater Treatment Plant. Wetlands are present at OU1.

History of Contamination

When the former paper mills on the Kalamazoo River recycled and/or de-inked and repulped waste paper that included carbonless copy paper, PCBs and other contaminants were present in the wastewater produced from the paper manufacturing process. The wastewater contained large quantities of suspended particles – primarily cellulose and clay. PCBs adsorb to the suspended particles in the wastewater. PCBs were present in the manufacturing process from at least 1957 until well after production of carbonless copy paper containing PCBs stopped in the 1970s. In the 1950s, the mills began building primitive clarifiers and dewatering or settling lagoons to remove solid particles, and the clarified wastewater was discharged to the rivers and creeks (i.e., Portage Creek at OU1).

OU1 is divided into individual study areas based on former historic operations (see Figure 3, OU1 Site Plan). According to the RI Report, these areas include the former operational areas, which include the following: the Bryant Historic Residuals Dewatering Lagoon (HRDL) and Former Residuals Dewatering Lagoons (FRDLs), Monarch HRDL, Type III Landfill, Western Disposal Area, and the Alcott Street Properties. All areas

received processed wastewater and/or dewatered paper residuals from paper manufacturing operations at the former Bryant and Monarch mills. In addition to receiving the processed wastewater and/or dewatered paper residuals, the Type III landfill area received non-process industrial wastes (such as cardboard, packing strips, waste paper and demolition materials). The operational history and volume of contamination for each area of OU1 are discussed below.

- Former Operational Areas (Bryant HRDL and FRDLs, Monarch HRDL, Type III Landfill, and Western Disposal Area).
 - o Bryant HRDL and FRDLs This area consists of six lagoons covering approximately 22 acres. The lagoons were used to settle out residuals from the wastewater generated at the Bryant mills. A clarifier and the earthen-diked HRDL were the primary treatment system, built in 1954. The series of five FRDLs were later added to dewater residuals. The HRDL was filled and has not been used for disposal since the late 1970s*. The FRDLs have not been used for disposal since 1989*.
 - Monarch HRDL This 7-acre lagoon was used as part of the initial primary treatment facility for process waste from the Monarch Mill. The facility consisted of a clarifier and an earthen-diked dewatering lagoon. After clarification, the wastewater supernatant was discharged to Portage Creek and the settled residuals were pumped to the Monarch HRDL for dewatering. The Monarch HRDL was used from the early 1950s until the 1960s.
 - Type III Landfill This 13-acre area was originally licensed as a landfill in 1966 to receive non-process wastes pursuant to State of Michigan requirements. It was then licensed as a Type II landfill and later the designation was changed to a Type III landfill in 1985 to receive residuals and demolition wastes (Type II landfills can accept municipal solid waste, while Type III landfills can accept construction/demolition and industrial wastes). Over the period of use (1966 until the late 1980s), the landfill area received various types of industrial waste and residuals.
 - Western Disposal Area This area covers approximately 19 acres and is located along the western edge of the Bryant HRDL, southwest of the former Type III landfill. According to the RI Report, this area was used as a disposal area for dewatered residuals mined from the HRDLs and FRDLs. By 1986 most of the areas were filled in, and vegetation was established by 1991.

^{*} The only exception to this was EPA's time-critical removal action at the Bryant Mill Pond area in 1998-1999. All contaminated materials excavated during the removal action were consolidated in the Bryant HRDL and FRDLs.

- Former Bryant Mill Pond Particles in the wastewater discharged from the mills to Portage Creek settled out in the 29-acre Bryant Mill Pond. As explained in more detail below, EPA conducted a time-critical removal action between 1998 and 1999 to address PCBs in the sediment.
- Residential/Commercial Areas (including but not limited to the following: former Panelyte property and marsh, Stryker Corporation property, Conrail property, clay seam area, and east bank area).
 - O Panelyte Property and Marsh This area encompasses approximately 23 acres and contains a fill area located at the southwestern end of the property. This property is a Brownfields Site which is being addressed under a state grant. Surface water from the Panelyte fill area and Western Disposal area drains toward the Panelyte marsh.
 - Stryker Corporation Property The parking lots of the Stryker property were constructed over parts of the former Bryant Mill Pond.
 - Conrail Property The railroad property extends along the western edge of OU1.
 - Clay Seam Area The clay seam is a body of residuals covering approximately a quarter of an acre that is present as a small, nearly vertical bluff on the east side of Portage Creek. Native soils underlie the clay seam at the elevation of the water line. The clay seam extends up to approximately 80 feet inland from the bank of Portage Creek.
 - East Bank Area A floodplain area along the eastern bank of Portage Creek. Approximately 1,700 cubic yards of residuals were removed from this area in 2002 by the PRPs as a voluntary interim response measure (see below).

Response Activities

Voluntary Response Activities

Between 2000 and 2005, the PRPs conducted a number of interim response measures to stop or prevent the migration of PCBs from OU1 into Portage Creek. The interim response measures were voluntarily conducted by the PRPs, and not under an administrative order with MDEQ or EPA. The interim response measures included the installation of sheetpile along the Bryant HRDL and FRDLs to stabilize the existing berm and prevent the Bryant Mill Pond residuals from eroding back into Portage Creek, capping the Bryant HRLD and FRDLS to

prevent erosion and infiltration of rainwater, and installation of a groundwater recovery system. The purpose of the groundwater recovery system was to maintain groundwater levels within a foot of the historic norm behind the sheetpile to mitigate the potential for raised groundwater levels to saturate previously unsaturated residuals. In addition, a wastewater treatment plant was installed in the fall of 2004 and began operation in February 2005 to treat recovered groundwater at OU1.

EPA Time-Critical Removal Action

In 1999, pursuant to a cash-out agreement with Millennium Holdings LLC, EPA completed a time-critical removal action at the Bryant Mill Pond area, the pond that received wastewater discharged by the former Bryant Mills. Approximately 150,000 cubic yards of PCB-contaminated sediment were excavated from the Bryant Mill Pond in an effort to clean up this upstream area, since it served as a significant source of PCBs to the Kalamazoo River. In 2003, an additional 1,000 cubic yards of contaminated material were removed from the Portage Creek floodplains. All contaminated material excavated during the time-critical removal action was consolidated in the OU1 Bryant HRDL and FRDLs.

Basis for Taking Action

The RI/FS for OU1 has not yet been completed nor a ROD issued, so EPA has not yet documented a basis for taking action at OU1. The remedial status of OU1 is discussed below.

Remedial Status

On October 26, 2006, MDEQ disapproved the OU1 Revised RI Report prepared by Millennium Holdings, LLC and decided to complete the report internally. MDEQ submitted a state-modified RI Report for OU1 to EPA in March 2007. EPA approved the RI Report in March 2008 and became the lead agency, in accordance with the process discussed in Section III.A. of this five-year review report. Millennium Holdings, LLC was developing the FS Report, but ceased activities on the Site in January 2009 with the bankruptcy filing. EPA assumed responsibility for completing the FS and expects to finalize the FS Report in the fall of 2012. EPA anticipates issuing a ROD for OU1 in 2013.

Since a ROD has not been issued for OU1, there is no remedial action to discuss or evaluate; therefore, OU1 is not discussed further in this five-year review report.

B.2. Operable Unit 2

Physical Characteristics

The Willow Boulevard/A-Site Landfill (OU2) is located southeast of the intersection of Business I-94 and Highway M-96 in Kalamazoo Township, Michigan. OU2 is bordered by the Kalamazoo River to the north and northwest, Davis Creek to the east, and Willow Boulevard Road, former Olmstead Creek, and residential areas to the south (see Figure 4, OU2 Location Map).

OU2 is approximately 32-acres in size and consists of two disposal areas: the Willow Boulevard Landfill and the A-Site Landfill. OU2 also includes impacted areas adjacent to and/or near the Willow Boulevard/A-Site Landfills (see Figure 5, OU2 Site Plan).

The A-Site Landfill occupies approximately 22-acres and contains approximately 475,400 cubic yards of PCB-contaminated material. The Willow Boulevard Landfill (including the Drainageway Area) occupies approximately 11-acres and contains an estimated volume of 152,100 cubic yards of contaminated residuals. Impacted areas adjacent to and/or near the landfills include the area east of Davis Creek, the area south of the A-Site berm (including former Olmstead Creek), and the area near monitoring well AMW-3A. The area east of Davis Creek is approximately 3.5 acres in size with an estimated volume of 3,800 cubic yards of contaminated materials. The area south of the A-Site berm is approximately 2.5 acres in size with an estimated volume of 2,900 cubic yards of contaminated materials. The AMW-3A area is approximately 0.25 acres in size with an estimated volume of 100 cubic yards of PCB-contaminated residual, soil, and sediment.

Land and Resource Use

Land use in the vicinity of OU2 includes industrial, commercial, and residential properties. The A-Site Landfill and Willow Boulevard Landfill are zoned for industrial use. The land south of OU2 is zoned residential and industrial. OU2 is currently an inactive landfill. Wetland areas are also present at OU2.

No private, commercial, or industrial water wells were identified within ½ mile of OU2. However, ten wells were identified within ½ mile of OU2. Four of the ten wells are public water supply wells owned by the City of Kalamazoo. Four are domestic wells, one well is an industrial well, and the usage of the last well is not known. It is not known whether any of the domestic wells within ½ mile of OU2 are being used for drinking water, though groundwater is migrating north toward the Kalamazoo River and not toward the residential area to the south.

History of Contamination

The Willow Boulevard and A-Site landfills were used to dispose of dewatered paper-making residuals from the former Allied Paper King Mill and the Georgia-Pacific Kalamazoo Mill, both located in Kalamazoo, Michigan. PCBs were part of the paper mills' waste streams between the 1950s and 1980s. Process residuals from the paper manufacturing operations were disposed at the Willow Boulevard and A-Site landfills. Over time, PCB-contaminated residuals from the landfills eroded and migrated into the soil and sediment of adjacent areas and/or into the Kalamazoo River. Surface water runoff from the landfills and adjacent areas also transported PCBs directly into the Kalamazoo River. Therefore, the landfills and adjacent areas are sources of PCBs to the river and Davis Creek, which empties into the Kalamazoo River.

The A-Site Landfill was originally a series of dewatering (or drainage) lagoons. Paper waste from the King Mill was piped to the A-Site lagoons, and water was allowed to settle out. Paper residuals accumulated within the lagoons, and over time, the A-Site became known as the A-Site Landfill. The A-Site lagoons were active between 1960 and 1967. Operations at the King Mill ended in 1971, and the mill was demolished in 1978. Georgia-Pacific purchased the A-Site in 1975 and used it to dispose of paper waste dug up from the King Highway dewatering lagoons until 1977. From 1977 to 1987, the A-Site received dewatered paper-making waste from the Kalamazoo King Mill filter presses. The A-Site ceased to be an active disposal area in 1987, when the King Highway Landfill operations began. The Willow Boulevard Landfill was acquired by Georgia-Pacific from the Kalamazoo Paper Company in 1967. From mid-1960 until 1975, dewatered paper residuals from the Kalamazoo Mill and the King Highway Lagoons were disposed at the Willow Boulevard Landfill. Disposal activities occurred from the mid-1960s until operations stopped in 1975.

Response Activities

Voluntary Response Activities

Between 1992 and 1999, Georgia-Pacific conducted a number of interim response measures to eliminate or reduce erosion of PCB-containing residual and soil from the landfill into the Kalamazoo River. The interim response measures were voluntarily conducted by Georgia-Pacific, and not under an administrative order with MDEQ or EPA.

In 1992, GP installed a chain-link fence around the landfill and reseeded the western portion of the A-Site Landfill to promote vegetative growth. In 1998, approximately 1,500 linear feet of sheet pile was installed between the A-Site and the Kalamazoo River to stabilize the earthen berm along the river and mitigate soil erosion. In 1999, approximately 7,000 cubic yards of PCB-contaminated residual and sediment were excavated from the western bank of the Kalamazoo

River adjacent to the landfill. The excavated material was placed into the eastern side of the Willow Boulevard portion of OU2. The landfill was then regraded to promote drainage and covered with 6 inches of clean sand as a temporary cover. A portion of the river's edge was also backfilled to create a sand berm along the Kalamazoo River. Geotextile and riprap were placed along a portion of the river's edge to reduce erosion of the riverbanks.

EPA Time-Critical Removal Action

On November 7, 2006, Georgia-Pacific signed an AOC with EPA to perform a time-critical removal action at the former Refuse Area of the former Georgia-Pacific Kalamazoo Mill property and at the Oxbow Area of the former Hawthorne Mill property. The former Kalamazoo Mill and Hawthorne Mill property is located north of OU2, across the Kalamazoo River. During the removal action, Georgia-Pacific removed approximately 33,203 cubic yards of PCB-containing soil/residual from the Refuse Area and approximately 17,488 cubic yards of PCBcontaining soil/residual from the Oxbow Area. Georgia-Pacific also removed contaminated soil from a transformer pad, wastewater pipeline, and from an underground pipe that was located at the former Kalamazoo Mill property. Material excavated from the transformer pad was sent to an off-site licensed landfill for disposal and material excavated from the wastewater pipeline and underground pipe was consolidated into the A-Site. The removal action started in November 2006 and was completed in June 2007. The portion of the A-Site that received the contaminated residual/soil was covered and a berm was constructed to keep surface water runoff from entering Davis Creek and the Kalamazoo River.

Basis for Taking Action

PCBs are the primary contaminant of concern and primary risk-driver at OU2. The media of concern are PCB-contaminated residuals within the Willow Boulevard and A-Site Landfills and PCB-contaminated residual, soil, and/or sediment in areas adjacent to the landfills including the Willow Drainageway, the area south of the A-Site Berm, the area east of Davis Creek, and the area near monitoring well AMW-3A.

The RI for OU2 was conducted between 1993 and 2000. The maximum PCB concentration in surficial residuals at the Willow Boulevard Landfill was 270 milligrams per kilogram (mg/kg), and the maximum concentration in subsurface residuals was 160 mg/kg. Surficial soil samples were not collected at the Willow Drainageway. The maximum PCB concentration in subsurface soil at the Drainageway was 30 mg/kg. The maximum PCB concentration in surface soil at the Area South of the A-Site berm was 14 mg/kg, and the maximum concentration in subsurface soil was 73 mg/kg. The maximum PCB concentration in surface sediment at the Former Olmstead Creek was 7.6 mg/kg. The maximum PCB concentration in surface residual, soil, and sediment at the area east of Davis Creek was 36 mg/kg; no subsurface soil samples were collected at this area

during the RI. The maximum PCB concentration in surface soil at the AMW-3A area was 5.9 mg/kg, and the maximum concentration in subsurface soil was 62 mg/kg. PCB concentrations in surface soil samples collected at residential properties adjacent to the landfills were either not-detect or below the State of Michigan residential cleanup criteria of 4.0 mg/kg.

A quantitative risk assessment was not conducted at OU2. Instead, potential risks associated with exposure pathways at OU2 were qualitatively assessed to determine which media would need to be targeted for remediation. Exposure pathways assessed in the qualitative risk assessment conducted at OU2 included the following: ingestion of and dermal contact with contaminated residuals, soil, and sediment; inhalation of airborne releases; and erosion into aquatic habitat. Media evaluated included air, surface soils, residuals and sediment, subsurface soils, surface water, and groundwater/leachate. Potential risks associated with exposure pathways were qualitatively assessed by comparing maximum PCB concentrations detected during the RI with cleanup criteria based on future land use and protective ranges established in the *Final (Revised) Baseline Ecological Risk Assessment* dated April 2003 (BERA). State of Michigan Part 201 Generic Cleanup Criteria were used in the qualitative assessment of potential risk at OU2.

Based upon the results of the RI and the qualitative assessment of risk to human health and ecological receptors, a response action at OU2 was deemed to be warranted because PCB concentrations in residuals, soil, and sediment at OU2 exceeded the Part 201 Generic Commercial II/Industrial Land Use Criteria of 16 mg/kg PCB (in soil) protective of human health for on-site workers and/or trespassers, the Generic Residential Land Use Criteria of 4 mg/kg PCB (in soil) protective of human health for residential land use, and/or the cleanup range of 5.5 to 8.1 mg/kg PCB (in soil) for the protection of ecological receptors (American Robin) established in the BERA. Additionally, a response action at OU2 was also deemed to be warranted because of the potential migration of PCBs from the landfills and adjacent areas (via erosion or surface water runoff) into the Kalamazoo River and because PCB concentrations in sediment of the wetland areas may present an unacceptable risk to people or animals (e.g., mink) who consume fish.

Because a ROD was issued that selected a remedial action for OU2, this OU is further discussed in the remaining sections of this five-year review report.

B.3. Operable Unit 3

Physical Characteristics

The King Highway Landfill (OU3) is located within the City of Kalamazoo, Kalamazoo Township, Michigan. OU3 includes the King Highway Landfill, the King Street Storm Sewer (KSSS) floodplain, and contaminated river sediments adjacent to the landfill. The OU3 ROD requires the cleanup of these areas, as well as five former waste lagoon areas located at the Georgia-Pacific Mill in Kalamazoo (herein referred to as the "Mill"

Lagoons"). Waste material from the Mill Lagoons was excavated and disposed in the King Highway Landfill. The Mill Lagoons are located north of the landfill across the Kalamazoo River (see Figure 6, OU3 Location Map, and Figure 7, OU3 Site Plan).

The King Highway Landfill occupies approximately 15 acres. The Mill Lagoons occupy approximately 7 acres, and the KSSS occupies approximately 1 acre. OU3 is bordered by King Highway (M-96) to the south, the Grand Trunk Railroad right-of-way to the west, and the KSSS floodplain and the Kalamazoo River to the north and to the east.

Land and Resource Use

The King Highway Landfill is zoned for industrial or secondary commercial use. The land immediately adjacent to the south and southwest of the landfill is classified for industrial or secondary commercial use. The land that contains the Mill Lagoons, located at the Georgia-Pacific Mill Property, is zoned for industrial use.

Future land use at the King Highway Landfill property will remain industrial. Institutional controls were required by the ROD. Some ICs are in place, but require revision, while other ICs are not yet in place. The landfill or areas with waste includes multiple parcels, some of which may have ICs in place. As part of the Institutional Control Plan for OU3, appropriate restrictive covenants will be recorded on all deeds for all the parcels which make up OU3. GP is working with the City of Kalamazoo to grant access for a bike path along the border of the property.

The Georgia-Pacific Lagoons were addressed as a part of the OU3 ROD. The projected land use at the Georgia-Pacific Mill Lagoons is expected to be restricted to industrial use with no public access.

History of Contamination

During a 15-year period, Georgia-Pacific de-inked office waste paper, which contained carbonless copy paper contaminated with PCBs, at two of the mills located at the Georgia-Pacific Kalamazoo Mill property. Originally, the Kalamazoo Paper Mill consisted of five mills, three for making paper products, and two for finishing and converting. Mills 1 and 3 both performed de-inking operations starting in the early 1950s. Mill 3 discontinued de-inking in the late 1960s, was refurbished, and resumed operations in 1975. Mill 1 de-inked continuously until the late 1970s. Raw paper waste from all the mills was routed to a clarifier. The clarifier effluent was pumped directly into the Kalamazoo River until 1964, at which time it was rerouted to the City of Kalamazoo Wastewater Treatment Plant.

The underflow from the clarifier was dewatered and disposed at various locations over the years. From the mid-1950s until the late 1950s, residuals were placed in the Mill Lagoons on the Georgia-Pacific Kalamazoo Mill property. In the late 1950s residuals

were sent for dewatering to the King Highway lagoons, which later became the King Highway Landfill. The Mill Lagoons were then only used as an emergency backup system. Georgia-Pacific dewatered residuals in the King Highway lagoons until 1977. After 1977, the King Highway lagoons were not utilized until the lagoons were licensed in 1983 by the MDEQ as a landfill for disposal of paper-making residuals. From 1987 to 1998, Georgia-Pacific used the King Highway Landfill for the disposal of dewatered paper-making residuals. Over time, the contaminated residuals migrated, via erosion or surface water runoff, from the landfills into adjacent areas and/or the Kalamazoo River.

The King Highway Landfill is a mono-fill of paper residuals. The landfill covers 15 acres and consists of four cells: Cells 1, 2, 3, and 4. The total volume of residuals in the landfill is estimated at 282,000 cubic yards. Cells 1, 2, and 3 were first licensed by the MDEQ in 1983 under the Michigan Solid Waste Management Action (Act 641) as a Type III landfill. Cell 4 was never permitted as an operating landfill. The majority of residuals in Cell 4 were submerged in a pond formed by the transport of water from the other three cells to Cell 4 through a culvert in the dikes. The four cells were separated by dikes approximately 10 to 20 feet high. These dikes were constructed of sand and gravel in the 1950s and were used as access roads. Access roads and no-fill areas comprise 7.9 acres of the King Highway Landfill. During construction of the sedimentation basin, nearby well installation, and during installation of landfill gas cutoff trenches, residuals contiguous with the landfill cells were encountered. Residuals were also encountered on parts of those no-fill areas as well as on property not owned by GP (i.e., City of Kalamazoo and MDOT).

Response Activities

Voluntary Response Activities

Pre-ROD interim measures were voluntarily conducted by Georgia-Pacific, and not under an administrative order with MDEQ. In 1994 and 1996, approximately 1,000 linear feet of sheet piling was installed to stabilize the berm along the northern sides of Cells 1, 2, and 3 of the landfill. The purpose of this interim measure was to prevent berm failure and subsequent migration of contaminated residuals from the landfill into the Kalamazoo River. In 1998, PCB-contaminated material was excavated from the King Street Storm Sewer, the Mill Lagoons, and from areas directly adjacent to the landfill cells. This included a portion of the Kalamazoo River directly adjacent to the sheet piling. Though these actions were required in the ROD for OU3, they are considered to be voluntary actions as they were conducted prior to the February 9, 2000, AOC for response actions at OU3. All known materials were consolidated back into the landfill from those areas.

Basis for Taking Action

The RI for OU3 was conducted in 1993. The maximum PCB concentration in the landfill

surface residuals was 3.6 mg/kg. PCB concentrations generally increase with depth through the residuals. However, PCB concentrations in the top eight feet of residuals in Cell 4 are as high as 69 mg/kg. Tests of the residuals that were added to the landfill later in its operational history did not detect PCBs with the exception of one sample in 1987 that contained 6.5 mg/kg PCBs. The maximum PCB concentration found in the top 16 feet of residuals in Cells 1, 2, and 3 was 8.8 mg/kg. Concentrations exceeding 50 mg/kg PCB were detected at depths of 16 to 30 feet. The maximum concentration in the subsurface residuals was 310 mg/kg. Soil below the King Highway Landfill has a maximum PCB concentration of 9.9 mg/kg.

Total PCB concentrations from samples collected in the KSSS floodplain had PCB concentrations ranging from 0.37 mg/kg to 99 mg/kg. The maximum PCB concentration found in the berms adjacent to the landfill was 77 mg/kg. Analytical results from samples collected at the Mill Lagoons showed PCB concentrations in surface residuals ranging from 0.2 to 110 mg/kg. PCBs were detected in three subsurface residual samples in the Mill Lagoons at concentrations ranging from 3.4 to 70 mg/kg. Five soil samples were collected below the Mill Lagoons. PCBs from native soils, below the lagoons, ranged from 0.043 to 2.9 mg/kg.

PCBs were not detected in groundwater at OU3 above performance standards. However, PCBs were detected in a leachate sample collected from Monitoring Well 10R at a concentration of 1.4 micrograms per liter (ug/L). One surface water sample was collected from the pond in Cell 4 and analyzed for PCBs. The analytical results show a PCB concentration of 0.026 ug/L.

The presence of PCB-contaminated residuals, soils, and sediment in areas outside the landfill and the Mill Lagoons is evidence that PCBs were migrating, via erosion or surface water runoff, from the landfill and the Mill Lagoons, into adjacent areas and the Kalamazoo River. Additionally, the landfill berms were eroding by surface water run-off and the continued flow of the Kalamazoo River. As a result of the information gained during the RI, the state concluded that OU3 and the Mill Lagoons are sources and potential sources of PCB contamination to the Kalamazoo River and its floodplain in the vicinity of OU3 and the Mill Lagoons.

A Baseline Risk Assessment (BRA) was conducted at OU3 to evaluate risks to human health and the environment under unremediated conditions. Because the waste at OU3 is identical (i.e., the wastes was generated from the same source at similar concentrations) to the wastes at the Mill Lagoons, and because the routes of exposure and the receptors are also the same, the MDEQ determined that the BRA for OU3 is applicable to the Mill Lagoons. Therefore, a separate BRA for the Mill Lagoons was not conducted. The BRA concluded that the primary migration pathway for the release of PCBs into the river is erosion of residuals from the landfill berms and floodplains and the Mill Lagoons. The largest potential risk and migration pathway is the release of PCB-contaminated residuals due to failure of the landfill berms.

Based upon the results of the RI and BRA, a response action at OU3 and the Mill Lagoons was necessary to eliminate or reduce the potential migration of PCBs to the Kalamazoo River. The largest potential risks identified for ecological receptors were due to past releases of PCBs from the landfill, its berms, and floodplains of the Mill Lagoons. The ecological risk assessment recognized that organisms and fish in the Kalamazoo River bioaccumulate PCBs and pass them up the food chain to other organisms which would feed upon them. The bioaccumulation food chain effects present the greatest potential risk to ecological and human health, via consumption of fish from the Kalamazoo River.

Because a ROD was issued that selected a remedial action for OU3, this OU is further discussed in the remaining sections of this five-year review report.

B.4. Operable Unit 4

Physical Characteristics

The 12th Street Landfill (OU4) is located in Otsego Township, approximately ½ mile northwest of the City of Plainwell in Allegan County, Michigan. The landfill occupies approximately 6.5 acres and is bordered by the Kalamazoo River to the east, by wetlands to the north and west, by industrial developed land to the south and southeast, and by a gravel pit operation to the south and southwest (see Figure 8, OU4 Location Map, and Figure 9, OU4 Site Plan).

The 12th Street Landfill is located within an environmentally sensitive area. The adjacent woodlands, wetlands, and the former powerhouse discharge channel provide suitable habitat for fish, turtles, and amphibians. Small mammals (i.e., mice, squirrels, woodchucks, mink, raccoons, fox and muskrats) and birds inhabit the areas surrounding the landfill. The Kalamazoo River is part of a bird migratory flyway route for waterfowl species, and the areas surrounding the 12th Street Landfill provide a migratory stopover that attracts and supports waterfowl. During nesting season, vegetation in the area provides cover and materials for nesting. Larger mammals, such as white-tailed deer, also use the landfill as evidenced by deer paths running over the top and along the sides of the landfill. Muskrat dens have been observed in the wetlands and there is evidence of extensive burrowing into the sides of the landfill by fox and woodchuck.

Land and Resource Use

Land use in the immediate vicinity of OU4 is characterized as industrial with residential property to the south and southwest. Wetlands are present north and northwest of the OU and the Kalamazoo River and former Plainwell Dam are located to the east and southeast.

The 12th Street Landfill is zoned industrial and will remain industrial in the future. A restrictive covenant running with the land from the owner of the landfill property to MDEQ as the grantee (MDEQ Reference No: RC-RRD-03-052 on USEPA Site No. 059B) is already in place (see Attachment 6, Restrictive Covenant for OU4). EPA is a third party beneficiary of this restrictive covenant. The restrictive covenant was recorded with the Allegan County Registry of Deeds on March 25, 2005, to restrict future land use at the landfill property. The existing restrictive covenant was amended on July 15, 2012, to prohibit the use of groundwater at the OU.

History of Contamination

The 12th St. Landfill was used from 1955 to 1981 for disposal of PCB-containing paper residuals consisting mostly of water, wood fiber, and mineral matter. PCBs were introduced into some of the residuals as a result of the paper manufacturing operations at the former Plainwell Paper Mill between 1957 and 1962. Over time, the contaminated residuals migrated, via erosion or surface water runoff, from the landfill into the adjacent wetlands, woodland areas, adjacent property, and into the powerhouse channel of the Kalamazoo River. The landfill is comprised mostly of paper residuals with some concrete rubble, construction debris, waste lumber, and corroded steel drums. The 12th Street Landfill contains an estimated 208,000 cubic yards of PCB-contaminated residuals. The 12th Street Landfill was closed in 1984 and covered with soil and seeded to promote vegetation.

Response Activities

No voluntary response actions were taken at OU4.

Basis for Taking Action

Sampling during the December 1996 RI confirmed the presence of paper residuals in the berm, in the adjacent wetland area, and in the former powerhouse discharge channel. Soil/residual samples were collected from soil and monitoring well borings that were located outside the landfill perimeter, and from two sediment cores collected in the former powerhouse discharge channel adjacent to the east side of the landfill. Elevated PCB concentrations were reported in 24 of the 45 samples analyzed, including both samples collected from the former powerhouse discharge channel, with a maximum PCB concentration of 158 mg/kg. Elevated concentrations of inorganic compounds were also detected in several samples at levels exceeding applicable criteria. Trace concentrations of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and pesticides were also reported.

Groundwater samples were collected from 15 monitoring wells and analyzed for VOCs, SVOCs, inorganic compounds, pesticides, and PCBs. PCBs were not detected and all other results were either non-detect or below the Part 201 Industrial and Commercial

Drinking Water Criteria and Groundwater Surface Water Interface (GSI) Criteria, with the exception of bis(2-ethuylhexyl) phthalate, which was detected in groundwater at a concentration of 290 ug/L. In 1995, a second round of groundwater samples was collected from each monitoring well. In that round of sampling, groundwater analysis was limited to PCBs only, and the results indicated non-detectable concentrations.

Three leachate wells were sampled in 1993 and again in 1995. Analytical results from the 1993 sampling event indicated that trace concentrations of various VOCs, SVOCs, and aldrin were present as well as an elevated concentration of toluene (680 ug/L) in leachate collected from one leachate well. The toluene concentration exceeded GSI criteria. In 1995, leachate samples were analyzed only for PCBs. Results indicated that leachate collected from one well had a PCB concentration of 1.4 ug/L.

Due to the similarities between the King Highway Landfill (OU3) and the 12th Street Landfill (OU4), such as similar waste (PCB-contaminated residuals generated from the same paper recycling process at similar concentrations), identical routes of exposure, and identical receptors, it was assumed that there was a similar level of unacceptable risk at the 12th Street Landfill as at OU3. Therefore, the King Highway Landfill BRA was used to assess the risks to human health and ecological receptors at OU4.

Based upon the results of the RI and BRA, a response action at OU4 was necessary to eliminate or reduce the potential migration of PCBs to the Kalamazoo River. The largest potential risks identified for ecological receptors were due to past releases of PCBs from the landfill into the Kalamazoo River. The ecological risk assessment recognized that organisms and fish in the Kalamazoo River bioaccumulate PCBs and pass them up the food chain to other organisms which would feed upon them. The bioaccumulation food chain effects present the greatest potential risk to ecological and human health, via consumption of fish from the Kalamazoo River.

Because a ROD was issued that selected a remedial action for OU4, this OU is further discussed in the remaining sections of this five-year review report.

B.5. Operable Unit 5

Physical Characteristics

Operable Unit 5 is located in Allegan and Kalamazoo Counties in southwestern Michigan. OU5 includes approximately 80 miles of the Kalamazoo River and a 3-mile stretch of Portage Creek (see Figure 10, OU5 Site Map).

Land and Resource Use

The Kalamazoo River is used for recreational purposes (i.e., swimming, boating, and fishing). River water is not used as a drinking water source and is not expected to be

used as a drinking water source in the future. Wetland areas are present along areas of the river. Land use in the floodplains adjacent to the river includes a mix of recreational, agricultural, residential and commercial use.

History of Contamination

Former paper mill operations, as previously discussed, were the source of the PCB contamination. Although PCB use in the manufacture of carbonless copy paper was discontinued in 1971, the waste streams of the Kalamazoo area paper mills most likely contained PCBs for at least a decade after 1971. The PCB-contaminated wastes from these paper mills were initially discharged directly to the Kalamazoo River and Portage Creek. Later, waste effluents were sent to clarifiers prior to being discharged to the river and creek. The bottom sludge from these clarifiers was placed in at least four disposal areas (landfills) along the river. Because the PCBs were associated with suspended fine clay particles, the clarifiers were ineffective in stopping the discharge of PCBs. The soils, sediment, water column, groundwater, and biota in and adjacent to an 80-mile stretch of the Kalamazoo River and a 3-mile stretch of Portage Creek are contaminated with PCBs.

EPA and MDEQ estimate that approximately 113,000 lbs of PCBs are currently located in the aquatic system. Today, the ongoing, uncontrolled erosion of contaminated paper wastes and soils from the river banks is the most significant source of PCB loading to the Kalamazoo River. Further, the presence of PCB-contaminated paper wastes in the river system, including streambed sediments and adjacent floodplain sediments, continues to expose ecological receptors, and human receptors who consume fish at unacceptable levels. A fish advisory, which is currently a published and posted warning to humans to not consume the fish in the Kalamazoo River, has been in place since the 1970s.

In 2003, MDEQ completed a Site-Wide Final (Revised) Human Health Risk Assessment (HHRA) and Baseline Ecological Risk Assessment for OU5. The HHRA quantitatively assessed potential risk to human health for different exposure pathways, including the consumption of fish, direct contact with contaminated floodplain soils, and inhalation of dust and volatile emissions from floodplain soils behind the state-owned dams. The HHRA concluded the most significant exposure pathway is the consumption of fish from the river because fish bioaccumulate PCBs from exposure to PCB-contaminated material, surface water, and prey. Recreational activities, including swimming, boating, and wading in the river, do not pose a health risk to people. The BERA concluded that sensitive consumers, such as mink, are the most at risk compared to other ecological receptors. Birds (represented by the American Robin) that consume a substantial amount of earthworms are also at significant risk if foraging takes place in the contaminated areas, and terrestrial mammals (represented by the red fox) may be at some risk if foraging is concentrated in river areas whose prey reside in contaminated areas and have taken up substantial amounts of PCBs.

Consistent with the 2007 AOC between EPA, Georgia-Pacific LLC, and Millennium Holdings, LLC, the risk assessments (HHRA and BERA) can be revised in each areawide RI/FS for OU5. A new Terrestrial Baseline Ecological Risk Assessment (TBERA) was developed for Area 1 of OU5, building upon information from the BERA. The TBERA also concluded that risks to ecological receptors may exist. EPA approved the TBERA as part of the Area 1 RI in June 2012.

Response Activities

EPA Time-Critical Removal Action: Plainwell Dam

On February 27, 2007, Georgia-Pacific and Millennium Holdings, LLC signed an AOC with EPA and the State of Michigan to conduct a time-critical removal action in an area of the Kalamazoo River called the "Plainwell Impoundment." Work began in March 2007 and was completed in June 2009. A total of 130,000 cubic vards of contaminated in-stream and bank sediment were removed by this action. Consistent with the federal Toxic Substances Control Act, sediments containing PCB concentrations greater than 50 parts per million (ppm, equivalent to mg/kg) were disposed at Environmental Quality Co.'s Wayne Disposal Landfill in Belleville, Michigan. Sediments with concentrations less than 50 ppm, which represent 80 percent of the waste material, were disposed at Allied Waste's C and C Landfill near Marshall, Michigan, and its Ottawa Farms Landfill near Coopersville, Michigan. The estimated cost of this project was \$30 million. This project also rerouted the Kalamazoo River to its original channel and removed the dam near Plainwell. The Kalamazoo River is now free-flowing from Kalamazoo to Otsego City, Michigan, with the exception of the diversion structures associated with the Plainwell Dam #2.

EPA Time-Critical Removal Action: Plainwell 2 Dam

In June 2009, Georgia-Pacific LLC and EPA entered into a legal agreement committing Georgia-Pacific to conduct a time-critical removal action in the Plainwell #2 Dam area. This second removal action project began in August 2009 approximately three miles upstream of the earlier Plainwell Dam cleanup, and included a two-mile stretch of the Kalamazoo River. The project was completed in December 2010. Approximately 11,000 linear feet of riverbank was cleared, excavated and restored, with approximately 18,000 cubic yards of soil and debris disposed off-site at the Allied Waste C&C Landfill in Marshall, Michigan, and at Ottawa County Farms Landfill in Coopersville, Michigan.

EPA Time-Critical Removal Action: Portage Creek

In July 2011, EPA signed an action memorandum to conduct a time-critical removal action along a 1.8-mile stretch of Portage Creek from Alcott Street to the

confluence of the Kalamazoo River. EPA began implementing this PCB hot-spot excavation project in September 2011. The project will take two to four field seasons to complete and will remove approximately 17,000 cubic yards of contaminated soil and sediment at a cost of about \$16 million.

Basis for Taking Action

The Supplemental RI/FSs for OU5 have not been completed, and no RODs have been issued for OU5. As a result, EPA has not yet documented a basis for taking any final remedial actions at this OU. The remedial status of OU5 is discussed below.

Remedial Status

On February 27, 2007, Georgia-Pacific Corporation and Millennium Holdings, LLC signed an AOC with EPA to conduct a Supplemental RI/FS investigation for the entire 80-mile stretch of the Kalamazoo River. OU 5 is divided into seven areas each separated by a dam. Area 1 is the most upstream area from Morrow Dam to the former Plainwell Dam. EPA approved the SRI Report for Area 1 on June 27, 2012. The FS Report for Area 1 is scheduled to be submitted to EPA in November 2012. The SRI for Area 2, which is the area of the Kalamazoo River from the former Plainwell Dam to the Otsego City dam, began in December 2010 and is due to EPA in November 2012. The SRI for Area 3, which is the area of the Kalamazoo River from the Otsego City dam to the Otsego dam, began in June 2012 and sampling is underway. Samples of river sediment and bank soil are being collected at specific locations along the river (see Figure 10, OU5 Site Map).

Since a ROD has not been issued for OU5, there is no remedial action to discuss or evaluate; therefore, OU5 is not discussed further in this five-year review report.

B.6. Operable Unit 7

Physical Characteristics

The former Plainwell Paper Mill (OU7) is located in the City of Plainwell, Allegan County, Michigan (see Figure 11, OU7 Location Map). The 34-acre mill property is bordered by the Kalamazoo River to the north, the Plainwell central business district to the east, residential property to the south, and commercial properties and the City of Plainwell Wastewater Treatment Plant to the west.

Land and Resource Use

Operable Unit 7 was formerly zoned industrial. In 2006, the City of Plainwell purchased the mill property and the mill property was rezoned as residential. Land use in the

immediate vicinity of OU7 is characterized as industrial, commercial, and residential. A restrictive covenant running with the land from the former owner of the property to MDEQ (MDEQ Reference No: RC-RRD-201-05-001 on USEPA Site No. 059B) is already in place (see Attachment 7, Restrictive Covenant for OU7). EPA is a third-party beneficiary of this restrictive covenant, which was recorded with the Allegan County Registry of Deeds on March 25, 2005. The restrictive covenant provides, among other things, that owners of the mill property must take reasonable steps to stop any continuing release of hazardous substances, and may not use the property in a manner that causes existing contamination to migrate beyond the property's boundaries. The restrictive covenant further provides that as response activities are performed at this property, MDEQ and EPA may require modifications to the covenant to assure the integrity and effectiveness of any selected remedial action.

History of Contamination

Between 1910 and 1962, various owners of the Plainwell Paper Mill obtained pulp through the de-inking and repulping of used paper. PCBs were introduced into the residuals as a result of the use of carbonless copy paper, which between approximately the 1950s and 1970s contained PCBs. Wastewater from the de-inking operations was discharged directly to the Kalamazoo River until 1954. After 1954, a clarifier was installed adjacent to the mill and wastewater was treated primarily by clarification. The clarified effluent was discharged into the Kalamazoo River. The underflow from the clarifier was dewatered in a series of on-site lagoons. The secondary treatment system was updated in 1983 with the installation of a second clarifier.

Historically, twice a year each lagoon was excavated and the material was taken to the 12th Street Landfill, located near the Plainwell Dam. The waste lagoons were taken out of service in 1983 when the second clarifier was installed. Four former waste lagoons are presently covered with soil and are well vegetated. Other lagoons were filled with soil after being cleaned out and are almost entirely located under the mill's present wastewater treatment facilities.

Response Activities

Emergency Response Action: Plainwell Mill Southern Banks

In 2007, at the request of the City of Plainwell, Weyerhaeuser conducted an emergency response action for the excavation of the southern banks of the Kalamazoo River adjacent to OU7 to abate a potential release from the banks of the mill property. The emergency action included only those activities made necessary as a result of the Plainwell Dam removal. An Emergency Response Action approach was authorized by EPA, on June 29, 2007, in accordance with the emergency action provisions of the Operable Unit #4 and the Plainwell, Inc. Mill Property of the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund

Site Consent Decree, which became effective February 22, 2005. Weyerhaeuser began work in November 2007 and completed the work in November 2008. Excavation activities were conducted in four stages (Zone A through Zone D), each stage addressing a separate section of the adjacent Plainwell Mill banks, which were selected based on similar bank and/or river conditions. Removal activities began with Zone A, a 600-foot length of river bank adjacent to the west end of OU7, and then moved upstream to Zone B, a 700-foot length of river bank east of Zone A, followed by Zone D, a 650-foot length of river bank adjacent to the east end of OU7, and finally Zone C, a 650-foot length of river bank area situated between Zones B and D. Excavation on shore was considered complete when visible residuals were removed and PCB concentrations in composite verification samples collected from underlying soils were less than 4 mg/kg. Excavation of floodplain and near-shore sediments was considered complete when the original river bottom was encountered or when residuals were no longer visible in soil and sediment samples and PCB concentrations in verification samples collected from the underlying material were less than 1 mg/kg. Areas where PCB concentrations exceeding target levels remained in place were covered with geotextile fabric and 6 inches of clean soil or stone. Excavated areas were backfilled with clean fill material, graded, and stabilized with rip-rap. Weyerhaeuser removed a total of approximately 3,500 cubic yards of sediment and floodplain soil. Consistent with the federal Toxic Substances Control Act, sediments containing PCB concentrations greater than 50 ppm were segregated and disposed (59.67 tons) at Environmental Quality Co.'s Wayne Disposal Landfill in Belleville, Michigan. Sediments with concentrations less than 50 ppm (4,704 tons) were disposed at Waste Management Westside Landfill in Three Rivers, Michigan.

Basis for Taking Action

OU7 is in the RI/FS stage of the Superfund process. The RI/FS has not been completed, and a ROD has not been issued for OU7. As a result, EPA has not yet documented a basis for taking action at OU7. The remedial status of OU7 is discussed below.

Remedial Status

In December 2004, Weyerhaeuser signed a Consent Decree which, among other things, obligated the company to conduct the RI/FS and RD/RA for the Plainwell Mill property. RI Phase I field sampling and analysis activities were conducted between May and December 2008 and included a historical information review, a geophysical survey, installation of test pits along the banks of the Kalamazoo River to the north of the mill buildings, and an initial groundwater evaluation and assessment of the on-site coal tunnel. Phase 2 of the RI was conducted between January and June 2010 and included PCB investigation activities near the mill

buildings banks. A draft RI Report was submitted to EPA in June 2011, and EPA provided comments on the draft report in February 2012.

As noted above, effective ICs are in place at OU7. The ICs were negotiated as part of the bankruptcy settlement with Plainwell Inc., a former owner of the property. The ICs will be reevaluated after the selection of a remedy for OU7.

Since a ROD has not been issued for OU7, there is no remedial action to discuss or evaluate; therefore, OU7 is not discussed further in this five-year review report.

IV. Remedial Actions

Remedial actions were selected in RODs that were issued for OU2, OU3, and OU4. Therefore, for each of these OUs, the following subsections describe the selected remedy (including ICs), its implementation, and system operations, where applicable.

A. Operable Unit 2

Remedy Selection

Remedial action objectives (RAOs) for the Willow Boulevard/A-Site Landfill (OU2) were developed based upon the findings of the November 2004 RI and the human health risk evaluation in the RI. The RAOs for OU2 include:

- Eliminate exposure to PCB-contaminated material exceeding applicable land-use and/or risk based cleanup criteria;
- Prevent PCB migration, via erosion or surface water runoff, into the Kalamazoo River; and
- Mitigate, to the extent practicable, adverse effects to the environment due to implementation of a remedial action.

The OU2 ROD was signed on September 27, 2006. The remedy selected in the ROD includes:

- Excavation of PCB-contaminated residuals, soil, and sediment from areas outside the landfill and consolidation of excavated material into the A-Site Landfill portion of OU2:
- Creating a clean buffer between the Kalamazoo River and the Willow Boulevard Landfill portion of OU2;
- Implementation of bank stabilization and erosion control measures to protect against bank and/or dike failure and migration of PCB-contaminated residuals into the Kalamazoo River.
- On-site disposal of PCB-contaminated material in accordance with a 40 C.F.R. § 761.61 risk-based disposal approval;
- Installing a fence that encompasses the landfill to restrict access to the landfill;

- Implementing deed restrictions limiting future land use to industrial and/or commercial use; and
- Long-term groundwater monitoring.

Remedy Implementation

On May 18, 2009, EPA and Georgia-Pacific signed a Consent Decree for the implementation of the remedy at OU2. Remedial design work began in 2010 with the Preliminary Design Report being submitted in July 2010. The Final Remedial Design Report was submitted in May of 2011 and approved by EPA on April 27, 2011. The RA site work began in May 2011 with clearing and grubbing of the Willow Boulevard Landfill. EPA anticipates that RA site work will be completed in the spring of 2013. Current completed activities include consolidation of wastes from the areas surrounding the Willow Boulevard and A-Site Landfills and capping, storm water management, and initial turf establishment at the Willow Boulevard Landfill. Capping and storm water management efforts at the A-Site Landfill are currently under construction. Major RA construction activities are anticipated to conclude with installation of the long-term monitoring network in late 2012 or the spring of 2013.

Institutional Controls

Since the last five-year review, the ICs at OU2 have been completed and recorded to prevent use of site groundwater and inconsistent land use, and for the protection of the remedy currently under construction (see Attachment 5). Table 2 summarizes the institutional controls for the restricted areas at OU2.

Table 2: Institutional Controls Summary for OU2

Table 2. Ilistitutional Controls	Odiffinary for OOL	
Media, remedy components & areas that do not support UU/UE based on current conditions	Objectives of IC	Title of Institutional Control Instrument Implemented
Groundwater – On Site	Prohibit groundwater use	Declaration of Restrictive Covenants and Environmental Protection Easement, July 22, 2010
Other Remedial Action Components	Prohibit Inconsistent Uses and protect the integrity of the remedy components	Declaration of Restrictive Covenants and Environmental Protection Easement, July 22, 2010

As noted above, a restrictive covenant is in place to restrict future use of the landfill property. The restrictive covenant prohibits any activity or use that would interfere with the landfill cap, prohibits excavation, restricts property uses to those compatible with industrial use, and restricts the use of site groundwater at this OU.

Current Compliance

The remedy is currently under construction. Compliance will be evaluated after completion of the remedial action.

Long-Term Stewardship

Compliance with effective ICs is required to assure long-term protectiveness. EPA will ensure that long-term stewardship of OU2, as well as every other OU of the Site, includes implementation and maintenance of each component of the selected remedy, including any necessary ICs. Along with implementation of effective ICs, assurance plans (such as the O&M Plan) must be developed to assure proper maintenance and monitoring of effective ICs. The plan would include regular inspection of ICs at the Site and annual certification to EPA that ICs are in place and effective.

B. Operable Unit 3

Remedy Selection

The RAOs for the King Highway Landfill (OU3) were developed based upon the findings of the July 1994 RI and the human health risk evaluation in the RI. The RAOs identified in the September1994 Focused Feasibility Study include:

- Reduce the potential migration of PCBs to the Kalamazoo River that could result from erosion of residuals from behind the dike that physically separates the residuals from the river, or failure of the dike;
- Restrict the potential for PCB migration from leachate to groundwater;
- Restrict the potential transport of PCB-containing soil/residuals along the dike to the river in surface runoff or by erosion of soils/residuals due to river flows; and
- Restrict the potential contact with PCB-containing soil/residuals and surface water by workers and trespassers at the King Highway Landfill.

The ROD for OU3 and the Georgia-Pacific Five Former Lagoons was signed by MDEQ in October 1997, and EPA concurred on the ROD in February 1998. The remedy selected in the OU3 ROD includes:

- Excavation and consolidation of PCB-contaminated soils, sediments, and residuals from the landfill berms, the KSSS floodplain, the Georgia-Pacific Mill Lagoons, and the river sediment adjacent to the King Highway Landfill, and containment of the excavated material into the King Highway Landfill;
- Construction of a State of Michigan Part 115 landfill-compliant cap over the landfill;
- Erosion protection on the berms of the landfill designed to protect against a 100-year flood event;

- Installation of new groundwater monitoring wells and abandonment of wells that are no longer needed;
- Long-term groundwater and surface water monitoring for 30 years after capping;
- Landfill gas monitoring;
- Implementing deed restrictions limiting future land use;
- Implementing access restrictions by enclosing the entire King Highway Landfill and the Mill Lagoons (only during remediation) with a fence; and
- Placing a permanent marker at the King Highway Landfill and posting warning signs at the entry gates and on the fence every 200 feet.

The purpose of the selected remedy at the King Highway Landfill and the Mill Lagoons is to prevent direct contact with PCB-contaminated residuals and eliminate or reduce the potential migration of PCBs from the landfill and the Mill Lagoons into the Kalamazoo River. The selected remedy addresses OU3 and the Mill Lagoons by reducing the current and potential migration of PCBs into the Kalamazoo River.

Cleanup goals for soil at OU3 and the Mill Lagoons were based on the anticipated future land use, which was expected to remain industrial. Both properties are zoned for industrial use, therefore, the limited industrial cleanup criteria for soil established in Sections 20120(a) and 20121(b) of Part 201, Environmental Remediation, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended, MCL 324.20101(0) et seq. (NREPA), were used. At the time the ROD was signed, the limited industrial cleanup criterion for PCBs in soil was 21 mg/kg, but this standard was later reduced to 16 mg/kg. The ROD required that all visible PCB-contaminated residual, soil, and sediment from the KSSS floodplain and the river adjacent to the landfill be excavated and consolidated back into the landfill. The ROD did not impose numerical cleanup criteria for the KSSS floodplain and river adjacent to the landfill because these actions were considered an interim response action. However, if the confirmatory sampling at the KSSS floodplain showed that a residential cleanup criterion of 1 mg/kg PCB or lower had been achieved, then the action at the KSSS floodplain would be accepted as a final RA.

Remedy Implementation

On February 8, 2000, a Consent Order was signed by Georgia-Pacific and the State of Michigan, whereby Georgia-Pacific agreed to implement the remedy for OU3 and the Georgia-Pacific Five Former Lagoons. The remedial design started on June 30, 1999, and was completed on September 27, 2002. There were no difficulties or changes that occurred during the remedial design. Georgia-Pacific voluntarily started construction of the remedial action in 1996, before the ROD was issued and before the Consent Order was executed.

At the time the Consent Order was signed in February 2000, the landfill cap had already been constructed. The next on-site mobilization that occurred was on October 21, 2002, when the long-term groundwater monitoring well network was installed. This date of on-site construction of the RA is the date that "triggered" the initial five-year review requirement.

Georgia-Pacific submitted a Final Report for Completion of Construction for the King Highway Landfill OU3 and the Mill Lagoons to the MDEQ in May 2004 and a post-closure O&M Plan in June 2004. As of this five-year review, the MDEQ has not yet approved the Final Completion of Construction Report or the Final O&M Plan. However, additional components of the remedy were, and are, still needed to ensure long-term protectiveness, including the following: methane gas mitigation efforts (trenches); resolution of property ownership issues for components of the remedy constructed beyond property owned by Georgia-Pacific and residuals that were discovered to be contiguous with the landfill extending onto adjacent properties; related remediation efforts for those residuals; and implementation of appropriate ICs. Therefore, new drafts of the Completion of Construction Report and O&M plan are necessary to reflect the current status of the OU. The review of these draft documents is being conducted by MDEQ concurrent with the remaining mitigation efforts.

Institutional Controls

At the King Highway Landfill, a locked chain-link fence and sheet pile enclose the landfill and restrict public access to the landfill and potential for exposure to PCB-contaminated material. Warning signs are posted along the fence every 200 feet, and permanent markers will be posted on both ends of the landfill after deed restrictions on the site parcels are recorded with the Kalamazoo County Register of Deeds. The Mill Lagoons property is also fenced to restrict public access to the property.

Two draft restrictive covenants have been prepared for OU3 and final details are being worked out between the State of Michigan and Georgia-Pacific LLC. The first restrictive covenant covers the landfill property portion of OU3, and the second covers the Mill Lagoons property, also part of OU3.

Restrictive Covenant for the King Highway Landfill Property

The King Highway Landfill restrictions as set forth in the draft restrictive covenant include: prohibitions on any use of the property that would interfere with response activities at the property; prohibitions on construction/use of wells for consumption, irrigation or any use except those necessary for response activities; prohibitions on construction of any new buildings or structures unless the structures are outside the remedy area and are approved by MDEQ; prohibitions on excavation or other intrusive activity that could affect the integrity of the landfill cap; and restrictions on uses other than those necessary to implement the remedial action. An Access License Easement under negotiation between the City of Kalamazoo and Georgia-Pacific provides the city and its contractors access across the landfill property to access a city force main; the access road covered by the easement is described on a survey that will be recorded with the restrictive covenant.

The restrictions for the landfill property cover six parcels owned by Georgia-Pacific. Georgia-Pacific owned three of the parcels (known as 1, 2, and 10) at the time of the

previous five-year review, and acquired three of the parcels (known as Parcel A, B, and the Triangle Parcel) from 2006-2008 after it was identified that parts of the OU3 remedy were installed on land not owned by Georgia-Pacific, including land within the Michigan Department of Transportation (MDOT) right-of-way along King Highway. In addition, landfill gas monitoring results at the time revealed that methane gas was migrating offsite.

To address these conditions, Georgia-Pacific purchased the Triangle parcel from MDOT, and Parcels A and B from MDOT and the City of Kalamazoo, respectively, and these parcels will be subject to the terms of the restrictive covenant. Georgia-Pacific also implemented a series of contingency actions to address the methane gas, including releasing potentially trapped gases, installing ventilators on passive gas riser vents, installing four landfill gas cutoff trenches and other barriers at the sides of the landfill, installing additional permanent gas monitoring probes, and increasing the frequency of landfill gas monitoring. While investigating and addressing the issues regarding the methane gas, additional residuals were discovered beyond the extent of the landfill and within the MDOT right-of-way. Georgia-Pacific performed additional investigations in the area, secured a permit to work on the MDOT property, and re-excavated in certain areas, removing visible residuals. In addition, Georgia-Pacific took soil borings for evaluation of the need for additional excavation, and a test pit was excavated for taking confirmation samples. The investigation and remedial activities conducted in the MDOT right-of-way are documented in reports submitted to MDEQ.

The portion of the King Highway right-of-way impacted by residuals was not available for purchase from MDOT, and therefore an approach for addressing remaining contamination was agreed upon as follows (in summary): Georgia-Pacific executed an Environmental License Agreement with MDOT for property within the MDOT right-ofway along King Highway, identified as "Parcel C" in documents submitted to MDEQ and filed with the Kalamazoo County Register of Deeds. The Environmental License Agreement delineates and provides notice of an area within the right-of-way where residual contamination remains, and provides for a bond from Georgia-Pacific for the purpose of covering additional costs that MDOT may incur due to the presence of the contamination if future construction is necessary within the right-of-way. The Environmental License was signed in March 2010. MDEO approved the completed remedial activities within the right-of-way on December 29, 2010. The remedial activities included excavation of the top foot of soil and disposing the materials at a solid waste landfill, placing an orange geotextile demarcation layer along the bottom of the excavation, backfilling the area with a minimum of one foot of clean topsoil, and grading, seeding and mulching the topsoil to promote proper drainage and revegetation.

¹ At the time of the 2007 five-year review, it was not known that residuals contiguous with the landfill extended onto adjacent properties.

On January 28, 2011. Georgia-Pacific recorded a Notice of Environmental Conditions with the Kalamazoo County Register of Deeds to place a notice in the chain of title regarding the location and nature of the PCB contamination remaining within the MDOT right-of-way, as well as the exposure barrier and clean fill placed over the residuals. Permanent markers for the right-of-way were placed between May 11 and May 18, 2011.

Restrictive Covenant on the Mill Lagoons Property

No decision had been made regarding restrictions on the Mill Lagoons portion of OU3 at the time the 2007 five-year review was completed. Georgia-Pacific, in consultation with MDEQ and EPA, has agreed to record a restrictive covenant restricting the uses of the Mill Lagoons property to substantially the same extent the King Highway Landfill is restricted, including: prohibitions on any use of the property that would interfere with response activities at the property; prohibitions on construction/use of wells for consumption, irrigation or any use except those necessary for response activities; prohibitions on construction of any new buildings or structures unless the structures are outside the remedy area and are approved by MDEQ; and restrictions on uses other than those necessary to implement the remedial action, with the exception of the following limited allowed uses:

- A recreational trail crossing a portion of the Mill Lagoons property that is owned and will be maintained by Kalamazoo County. An easement from Georgia-Pacific to Kalamazoo County executed on May 15, 2012, allows access to the recreational non-motorized path, prescribes allowed uses, requires maintenance, and describes the area covered by the easement and on which recreational uses are allowed by the restrictive covenant (the easement will be attached to the restrictive covenant and recorded with it). The easement also acknowledges the Superfund status of the Mill Lagoons property and commits the county to complying with all laws and rules that apply to the Mill Lagoons property. The draft restrictive covenant creates an express exception for recreational use for the easement area, fencing, and benches within the fenced area. Kalamazoo County has also provided its consent to the terms of the draft restrictive covenant, which will be recorded with the restrictive covenant. New surveys depicting the trail location are being prepared for recording as well.
- An Access License Agreement allowing Kalamazoo County access to construct and maintain the non-motorized path crossing a portion of the Mill Lagoons property, also executed on May 15, 2012. The Access License grants a temporary construction license for installation of the recreational trail, prohibits soil excavation or removal, and acknowledges the Superfund status of the Mill Lagoons property and commits the county to complying with all laws and rules that apply to the Mill Lagoons property. The license expires on the earlier of completion of the trail or December 31, 2012.
- Portions of the City of Kalamazoo sanitary sewer line, as well as a force main and pump station, are located on and under the Mill Lagoons property and are served by

an access road for maintenance. The sewer lines are identified in existing easements recorded at Liber 820, page 1483, and Liber 811, page 780. An Access License Agreement for construction and maintenance of the force main, sewer line, and pump station in areas covered by the restrictive covenants is under discussion between the City of Kalamazoo and Georgia-Pacific to address the city's plans for sewer improvements in the near future. The Access License Agreement, when executed, will be recorded and will reference the Restrictive Covenant for the Mill Lagoons Property and the Landfill Property as needed. The draft restrictive covenant language addresses the city's plans by providing for an allowed use within the sewer easements and forthcoming Access License Agreement for sewer installation or maintenance work.

Table 3 summarizes the institutional controls for these restricted areas at OU3.

Table 3: Institutional Controls Summary for OU3

Media, remedy components & areas that do not support UU/UE based on current conditions	Objectives of IC	Title of Institutional Control Instrument Implemented
Landfill – Capped Area	Prohibit use except maintenance and assure integrity of the landfill cap	Institutional controls are being evaluated
Groundwater – On Site	Prohibit groundwater use	Institutional controls are being evaluated
Other Remedial Action Components	Prohibit inconsistent uses and protect the integrity of the remedy components	Institutional controls are being evaluated
Georgia-Pacific Mill Property	Use limited to industrial use and a recreational bike trail	Institutional controls are being evaluated

System Operations and O&M Costs

GP has submitted a document that summarizes the previous five years of O&M costs for OU3, as is required by the AOC. The "maintenance" category is not itemized, but the dollar amounts are a significant percentage. Operation and maintenance costs were estimated in the ROD to be \$125,000 per year. The actual annual O&M cost is \$250,000. These costs are mostly attributed to activities performed pursuant to the *Hydrogeologic Monitoring Plan* and the *Landfill Gas Monitoring Plan*, which were developed pursuant to the requirements of the AOC (and which were developed years after the Focused Feasibility Study and ROD). Some of the activities performed include water level measurements, ultra low-flow groundwater sampling, data analysis and evaluation, design of various landfill gas control devices, and regulatory reporting none of which were contemplated as part of the development of the annual O&M cost estimate presented in the 1994 Focused FS. Actual costs of physical cap maintenance and repair are less

than those estimated in the 1994 Focused FS, as there have not been any significant repair activities required thus far for the cap. A significant portion of the current annual O&M costs associated with on-site maintenance activities have been associated with the installation of several landfill gas control devices over the past several years.

C. Operable Unit 4

Remedy Selection

The RAOs for the 12th Street Landfill (OU4) were developed based upon the findings of the RI and the human health risk evaluation in the RI. The RAOs identified in the July 1997 Focused Feasibility Study Report include:

- Reduce the potential migration of PCBs to the Kalamazoo River that could result from erosion of residuals;
- Reduce the potential migration of PCBs to the adjacent property and wetlands that could result from erosion of residuals;
- Restrict the potential for PCB migration from leachate to groundwater; and
- Restrict the potential contact with PCB-containing soil/residuals by any workers or trespassers, or any anglers along the river.

MDEQ signed the ROD for OU4 on September 28, 2001. EPA concurred on September 28, 2001. The OU4 ROD requires the cleanup of the 12th Street Landfill and four areas adjacent to the landfill into which PCBs have migrated including: the woodland area, wetlands, adjacent property, and the former powerhouse channel.

The remedy selected in the 12th Street Landfill OU 4 ROD includes:

- Excavation of PCB-contaminated residuals, soil, and sediment from areas adjacent to the landfill and consolidation of the excavated material back into the landfill;
- Creating a hydraulic barrier between the east side of the landfill along the former powerhouse discharge channel;
- Restoration of areas that are excavated, cleared and grubbed, or otherwise affected by the remedial action;
- Construction of a side wall containment system around the outside of the landfill that provides side slope stability, 500-year event flood protection, and erosion control;
- Construction of a cover (cap) over the landfill that consists of, from bottom up, a six-inch-thick granular fill layer, 30-mil-thick geomembrane liner, 24-inch-thick general fill layer, and a six-inch-thick vegetative layer;
- Installation of a groundwater monitoring network and abandonment of wells no longer in use;
- Long-term groundwater monitoring and, during excavation activities, short-term surface water monitoring;

- Deed restrictions to restrict future land use; and
- Access restrictions including constructing a fence surrounding the landfill with warning signs and permanent markers posted along the fence.

Remedy Implementation

The Consent Decree for RD/RA work addresses the 12th Street Landfill OU4 and also requires a RI/FS investigation and RD/RA implementation at the former Plainwell Mill property (OU7). The Consent Decree for RD/RA was agreed to by EPA and Weyerhaeuser in December 2004, and entered by the U.S. District Court on February 15, 2005. However, at the request of EPA, the start of the remedial design phase of the remedy was put on hold pending the outcome of settlement negotiations for the Plainwell Dam removal action. Settlement negotiations ended on February 27, 2007. In May 2007, EPA notified Weyerhaeuser to begin the design phase of the 12th Street Landfill remedy and to initiate the RI at the former Plainwell Mill Property OU7.

Weyerhaeuser completed an emergency response at OU4 in accordance with the Consent Decree in anticipation of the future removal of the Plainwell Dam. The Plainwell Dam is located just upstream and adjacent to the landfill. Weyerhaeuser completed removal of contaminated sediments in the adjacent powerhouse channel and grading and armoring of the riverbanks along the Kalamazoo River adjacent to the 12th Street Landfill. The work represented a portion of the work associated with implementation of the remedial action that was selected in the ROD. The remaining components of the selected remedy were designed during the remedial design phase of work that started with the submittal of the Preliminary Design Report in October 2008. The final Remedial Design Report was approved in March of 2010. RA field work began in April 2010 and included consolidation of waste, capping, storm water management, turf establishment, and installation of a long-term groundwater monitoring network. Weyerhaeuser completed the RA field work in November 2010. EPA granted the Certification of Completion of the RA on October 1, 2012. Initial operation and maintenance efforts include repair of erosion during turf establishment and placement of additional topsoil and seeding over the perimeter pore water discharge trench to prevent undercutting of the rip-rap-filled shallow trench and surface erosion.

Quarterly groundwater monitoring began in October 2011. Two quarters of monitoring have been completed so far. Low-level concentrations of arsenic and cyanide have been detected at concentrations that exceed applicable State of Michigan generic criteria at one or more monitoring locations. Evaluation of groundwater monitoring data will continue until sufficient data is available to determine contaminant trends.

Institutional Controls

Access restrictions are currently inadequate at the 12th Street Landfill. A chain-link fence was installed on the south side of the landfill and warning signs were posted. However, OU4 is not fenced on the north, east, and west sides of the landfill, and the OU is easily accessible by the public.

Since the last five-year review, the ICs at OU4 have been modified to prohibit the use of groundwater. Table 4 summarizes the institutional controls for the restricted areas at OU4.

Table 4: Institutional Controls Summary for OU4

Media, remedy components & areas that do not support UU/UE based on current conditions	Objectives of IC	Title of Institutional Control Instrument Implemented
Groundwater – On Site	Prohibit groundwater use	Amendment to Declaration of Restrictive Covenants and Environmental Protection Easement, July 19, 2012
Other Remedial Action Components	Prohibit inconsistent uses and protect the integrity of the remedy components	Declaration of Restrictive Covenants and Environmental Protection Easement, March 22, 2005

As noted above, a restrictive covenant is already in place to restrict future use of the landfill property. The restrictive covenant prohibits any excavation that would interfere with the landfill cap and the amendment to the restrictive covenant prohibits of the use of on-site groundwater.

Current Compliance

The access restrictions are currently inadequate to prevent trespassing and/or remedy vandalism at the landfill. A fence needs to be constructed to prevent access and possibly other measures need to be employed to ensure long-term protectiveness. During the RD phase, Weyerhaeuser requested permission to only install limited fencing so the use of OU4 as an eco-park could be evaluated. EPA expects to discuss this potential use of OU4 and long-term access controls with Weyerhaeuser by the end of 2012.

Long-Term Stewardship

Compliance with effective ICs is required to assure long-term protectiveness. EPA will ensure that long-term stewardship of OU4, as well as every other operable unit of the Site, includes implementation and maintenance of each component of the selected remedy, including any necessary ICs. Along with implementation of effective ICs, assurance plans (such as the O&M Plan) must be developed to assure proper maintenance and monitoring of effective ICs. The plan would include regular inspection of ICs at the site and annual certification to EPA that ICs are in place and effective.

V. Progress Since the Last Review

Protectiveness Statements from Prior Review

The prior five-year review contained the following protectiveness statements for OU3 and OU4.

OU3 - King Highway Landfill: "The remedy at OU3 currently protects human health and the environment in the short-term. The landfill cap is in good condition and prevents PCBcontaminated material in the landfill from migrating, via erosion or surface water runoff, into the Kalamazoo River. The cap is also an effective barrier that prevents exposure, via direct contact, to the contaminated material by on-site workers, trespassers, and anglers. The cap also minimizes infiltration of rainwater and reduces the potential for leachate generation and the potential for PCBs in groundwater to migrate into the Kalamazoo River. Public access to the landfill is restricted by a locked chain-link fence and sheet pile, where present, and prevents people from being exposed to the contaminated material. Institutional controls are not yet in place. However, in order for the remedy to be protective in the long-term, the following actions will need to be taken: (1) submit a schedule or plan to U.S. EPA and MDEQ for resolving ownership issues with respect to the MDOT and city of Kalamazoo properties and for implementing ICs at the landfill and MDOT and city of Kalamazoo properties; and (2) submit a landfill gas mitigation plan to MDEO that will satisfy its concerns about the off-site migration of methane gas at the south end of the landfill. Long-term protectiveness requires compliance with effective ICs. U.S. EPA will ensure that long-term stewardship of OU3, as well as every other operable unit of the Site, includes implementation and maintenance of each component of the selected remedy, including any necessary ICs."

OU4 12th Street Landfill: "The remedy at the 12th Street Landfill OU4 is not protective because the remedy has not yet been constructed and because access controls are inadequate to protect trespassers from short-term risks associated with remedy construction. A chain-link fence is installed along the west side of the landfill but not on the east, north, and south sides of the landfill and trespassers can easily gain access to the landfill. A chain-link fence will need to be installed on all sides of the landfill to prevent public access to the property and prevent trespassers from being exposed to PCB-contaminated material during the on-going construction activities. Long-term protectiveness requires compliance with existing ICs. Although ICs are in place, an evaluation is necessary of whether groundwater use at the landfill needs to be restricted and, if so, whether existing ICs appropriately restrict or prevent groundwater use at the landfill property. This evaluation will be made during the remedial design phase of the remedy. U.S. EPA will ensure that long-term stewardship of OU4, as well as every other operable unit of the Site, includes implementation and maintenance of each component of the selected remedy, including any necessary ICs."

<u>Issues and Recommendations from Prior Review</u>

During the first five-year review, several issues were identified at OU3 and OU4. The information below provides information on the actions that have been taken to address those issues.

OU3 King Highway Landfill:

Table 5: Actions Taken at OU3 Since the Last Five-Year Review

Issues from Previous Review	Recommendations/ Follow-up Actions	Party Responsible	Milestone Date	Action Taken and Outcome	Date of Action
Institutional controls are not in place at the landfill property, including the land currently owned by MDOT and city of Kalamazoo which is located within the site security fence. The remedy is not protective until effective ICs are placed on both properties and are monitored and maintained.	An IC Plan will be prepared documenting the IC evaluation activities and necessary corrective measures. The IC plan is necessary to evaluate what ICs are necessary and develop a schedule for their implementation. The IC plan will also evaluate how to ensure long-term stewardship of the OU and long-term protectiveness of the remedy.	EPA	April 18, 2008	The IC plan was completed on September 14, 2007. Two draft restrictive covenants have been prepared for OU3 and final details are being worked out between the State of Michigan and Georgia-Pacific LLC. The first restrictive covenant covers the landfill property portion of OU3, and the second covers the Mill Lagoons property, also part of OU3.	Sept. 2007 (IC plan); January 2011 (draft restrictive covenant); Ongoing
MDEQ approval of the Final Completion of Construction Report and the Final O&M Plan is pending resolution of the MDOT and city of Kalamazoo property ownership issues.	Submit a schedule or plan to U.S. EPA and MDEQ for 1) resolving issues associated with the MDOT and city of Kalamazoo properties and 2) implementing ICs at the landfill property and the MDOT and city of Kalamazoo properties	PRP	November 15, 2007	Two draft restrictive covenants have been prepared for OU3 and final details are being worked out between the State of Michigan and Georgia-Pacific LLC. The first restrictive covenant covers the landfill property portion of OU3, and the second covers the Mill Lagoons property, also part of OU3.	January 2011 (draft restrictive covenant); Ongoing
Methane gas has migrated off-site in concentrations that exceed threshold criteria and will need to be mitigated.	Submit a landfill gas mitigation plan to MDEQ that will satisfy its concerns about the off-site mitigation of methane gas at the south end of the landfill	PRP	November 2007	Georgia-Pacific constructed gas collection trenches and additional monitoring locations to evaluate the effectiveness of the mitigation efforts.	2007-2012

Other actions that have been taken at OU3 since the last five-year review include the following:

 Acquisition of the Triangle Parcel at the southwest corner of the King Highway Landfill and Parcels A and B along the southern boundary of the King Highway Landfill to ensure that all structures and/or components of the remedy were located on property owned by Georgia-Pacific.

- Excavation and off-site disposal of some PCB-containing soils/residuals from the western portion of the MDOT right-of-way located south of the site security fence. As part of this remedial activity, a certain area of PCB-containing soils/residuals was left in place. This area, referred to as Parcel C, was delineated through visual observation and analytical testing via the advancement of soil borings and the excavation of test pits. The top one foot of material in Parcel C was excavated and an orange non-woven geotextile was placed at the bottom of the excavation. The area was then backfilled with a one-foot-thick layer of clean backfill material, graded, seeded, and mulched to promote drainage and facilitate revegetation. A Final Environmental License Agreement Associated with the MDOT R-O-W was executed between MDOT and Georgia-Pacific; this was the mechanism by which MDOT allowed the PCB-containing soils/residuals to remain within its property. In parallel with the Final License Agreement, the Final Notice of Environmental Conditions Affecting Property Controlled by the MDOT was developed in coordination with MDEQ and recorded with the Kalamazoo County Register of Deeds on January 28, 2011, to notify any potential future owners of the property that PCB-containing material remained below grade within this area.
- Installation of permanent markers in the MDOT right-of-way to notify the public of the environmental conditions that exist specifically, PCB-containing residuals present below the demarcation layer installed one foot below grade within Parcel C.

OU4 12th Street Landfill:

Table 6: Actions Taken at OU4 Since the Last Five-Year Review

Issues from Previous	Recommendations/	Party	Milestone	Action Taken and	Date of
Review	Follow-up Actions	Responsible	Date	Outcome	Action
Access controls are inadequate. A chain-link fence is present along the south side of the landfill but there is no fence on the north, east, or west sides of the landfill. Trespassers and anglers can freely enter the property and use the river banks to fish and may become exposed to contaminated material.	Install a chain-link fence on the north, east, and west sides of landfill; post warning signs every 200 feet along the fence and on all entry gates; and place permanent markers around the boundary of the landfill describing the restricted area and the nature of the restrictions.	PRP	December 2007	Not yet completed; a fence needs to be constructed to prevent access and possibly other measures employed to prevent exposures until the remedy is fully implemented. During the RD phase, Weyerhaeuser requested permission to install limited fencing so the use of OU4 as an eco-park could be evaluated. EPA expects to discuss this potential use of OU4 and long-term access controls with Weyerhaeuser by the end of 2012.	Planned for May 2013

Issues from Previous	Recommendations/	Party	Milestone	Action Taken and	Date of
Review	Follow-up Actions	Responsible	Date	Outcome	Action
It is unclear whether groundwater use at the landfill needs to be restricted and, if so, whether existing ICs appropriately restrict groundwater use within the landfill property.	Evaluate whether groundwater use at the landfill should be restricted and, if so, amend existing ICs as necessary to ensure that ICs adequately restrict groundwater use at the landfill property.	PRP	April 2008	The use of groundwater has been restricted through the Amendment to Declaration of Restrictive Covenants and Environmental Protection Easement, July 19, 2012.	July 19, 2012

Other actions that have been taken at OU4 since the last five-year review include the following:

- The final Remedial Design Report was approved in March 2010. RA field work began in April 2010 and included consolidation of waste, capping, storm water management, turf establishment, and installation of a long-term groundwater monitoring network. Weyerhaeuser completed the RA field work in November 2010, and EPA granted the Certification of Completion of the RA on October 1, 2012. Initial operation and maintenance efforts include repair of erosion during turf establishment and placement of additional topsoil and seeding over the perimeter pore water discharge trench to prevent undercutting of the riprap-filled shallow trench and surface erosion.
- Quarterly groundwater monitoring began in October 2011. Two quarters of monitoring have been completed. Low-level concentrations of arsenic and cyanide have been detected at concentrations that exceed applicable State of Michigan criteria at one or more monitoring locations. Evaluation of groundwater monitoring data will continue until sufficient data is available to determine contaminant trends.

VI. Five-Year Review Process

Administrative Components of the Five-Year Review Process

The EPA Remedial Project Manager (RPM), James Saric, notified the MDEQ and Georgia-Pacific of the start of the second five-year review in a letter dated February 23, 2012. The EPA RPM headed the five-year review team and was assisted by co-RPMs Michael Berkoff and Sheila Desai, and the MDEQ Project Managers, Paul Bucholtz, Keith Krawczyk, and Kristi Zakrzewski.

The review schedule included the following components:

Community Notification
Document Review
Data Review
Site Inspection
Five-Year Review Report Development and Review

Community Notification and Involvement

In September 2012, the EPA Office of Public Affairs placed an ad in the local newspapers announcing that the five-year review was in progress and requesting that any interested parties contact the EPA RPM or Community Involvement Coordinator for additional information. Copies of the newspaper notices are included in Appendix A. Since the announcement notice was issued, no member of the community has contacted EPA regarding the five-year review.

Document Review

The five-year review included a review of relevant documents, which are listed in Appendix B.

Data Review

The five-year review included a review of relevant data reports listed in Appendix C. The findings of the data are discussed throughout this five-year review report. Since the last five-year review, groundwater samples at OU3 have been collected quarterly through 2010 and then biannually since 2011. PCBs have not been detected in the vast majority of those groundwater samples. When detected, PCBs are significantly below the 0.2 μ g/L screening level. At OU4, quarterly groundwater monitoring began in April 2011. PCBs have not been detected in the vast majority of those samples. When detected, PCBs are significantly below the 0.2 μ g/L screening level. Monitoring wells have yet to be installed at OU2. The groundwater monitoring results for OU3 and OU4 are included in Attachment 2.

Site Inspection

Willow Boulevard/A-Site Landfill OU2

The five-year review site inspection of OU2 was conducted on August 7, 2012, with Kristi Zakrzewski from MDEQ, Garry Griffith from Georgia-Pacific, and Michael Berkoff from EPA participating. The photographs and site inspection log are included in Attachments 3 and 4, respectively.

During the inspection, EPA observed that the gas venting sand layer was being placed upon the A-Site portion of OU2. Installation of the landfill cover was complete at the Willow portion of OU2, but the groundwater monitoring system had not yet been installed.

King Highway Landfill OU3

The five-year review site inspection of OU3 was conducted on August 7, 2012, with Keith Krawczyk from MDEQ, Garry Griffith from Georgia-Pacific, and Michael Berkoff from EPA participating. The photographs and site inspection log are included in Attachments 3 and 4, respectively.

At the time of the inspection, weather conditions were sunny with an air temperature in the mid-80s. The activities conducted during the inspection included a walk through the OU to assess the physical integrity of the components of the remedy, including the landfill cap, groundwater monitoring wells, gas vents, security fence, etc.

The landfill cap was in good condition. The vegetative cover had a few distressed areas. Most of these areas appear to be due to the lack of precipitation. There was one distressed area at which methane was detected on May 31, 2012 (see Figure 7, OU3 Site Map). The presence of methane in the soil would indicate that methane is migrating up through some compromise to the geosynthetic liner. On August 27, 2012, contractors for Georgia-Pacific excavated the area and discovered a tear and several small holes in the geomembrane liner. The contractors then replaced that section of the liner, tested its integrity and then backfilled the area. Georgia-Pacific's contractors completed the work on August 29, 2012. Erosion was observed in the southeast corner of the landfill with the toe of the liner visible in four locations. Erosion of the soil cover, in the form of a gully, was also observed along the southern border of the landfill near the sedimentation outlet. The second location is outside of the landfill cap. Georgia-Pacific expressed its intent to address both of these areas. During the inspection, the inspection team observed another distressed area on the eastern toe of the landfill, which was similar in appearance to the distressed area at which methane had been detected. Georgia-Pacific agreed to sample the soil in this area for methane. The inspection team observed some settling within the drainage swale along the northern landfill cap access road. That settling prevents drainage as designed. Georgia-Pacific agreed to regrade the area. Some gas vents appeared to be slightly tipped but the surrounding cap did not appear to be compromised. Otherwise, the cap appeared to be fairly well maintained with no other noticeable depressions, cracks, or odors. The areas in need of repair will be addressed as a part of the regular O&M of the landfill.

Groundwater wells were in good condition and properly secured. Gas monitoring probes and passive gas vents were also in good condition, properly secured, and functioning properly. A locked, chain-link fence surrounds the landfill and effectively restricts public access to the landfill. At the time of the inspection, warning signs were posted every 200 feet on the fence. Permanent markers will be posted on each side of the property at the time the restrictive covenant is recorded with the City of Kalamazoo Registry of Deeds.

Interviews were conducted with Keith Krawczyk, MDEQ project manager, and Garry Griffith, Georgia-Pacific project manager, during the August 7, 2012, site inspection.

Though the MDEQ project manager is generally satisfied with the overall operation and maintenance of the OU3 remedy, he is dissatisfied with the O&M Manager's responsiveness in addressing problems as they arise and the overall quality of the site inspections. The Georgia-Pacific project manager addressed these concerns, stating that future inspections would be conducted by different personnel and that they would be more prepared for the inspections, and an appropriate response would be completed to address issues identified during the inspections.

No interviews with the public were conducted or necessary during the five-year review period as community interest regarding OU3 is minimal.

12th Street Landfill OU4:

The five-year review site inspection of OU4 was conducted on August 7, 2012, with Kristi Zakrzewski from MDEQ, Jodie Dembowske of Conestoga Rovers & Associates, and Michael Berkoff from EPA participating. The photographs and site inspection log are included in Attachments 3 and 4, respectively.

At the time of the inspection, weather conditions were sunny with an air temperature in the mid-80s. The activities conducted during the inspection included a walk through the OU to assess the physical integrity of the components of the remedy, including the landfill cap, groundwater monitoring wells, gas vents, security fence, etc.

The landfill cap was in good condition. The vegetative cover had a few distressed areas, which appear to be due to the lack of precipitation. At the toe of the landfill, on the northern, southern and western sides, the site team observed a band of erosion. The area corresponds with the zone at which water exits the cap drainage layer. Portions of the geotextile layer that make up the drainage feature were exposed. This band of erosion had been observed at the landfill on multiple previous site visits. The previous remedy for the problem was to add soil patches to the eroded areas. The inspection team agreed that repairs are needed to prevent further erosion. Otherwise, the cap appeared to be fairly well maintained with no noticeable depressions, cracks, or odors.

Groundwater wells were in good condition and properly secured. Gas monitoring probes and passive gas vents were also in good condition, properly secured, and functioning properly. As previously discussed, access controls do not currently prevent trespass. At the time of the inspection, warning signs were not posted every 200 feet on the fence and permanent markers were not posted on each side of the property. EPA and MDEQ are evaluating Weyerhaeuser's proposed signage, which will be installed once approved. The restrictive covenant is recorded with the City of Kalamazoo Registry of Deeds.

VII. Technical Assessment

A. Operable Unit 2

Question A: Is the remedy functioning as intended by the decision documents?

No. Implementation of the remedy is not yet complete, as the landfill cover is not in place at the A-Site Landfill. Groundwater monitoring wells are not in place at the Willow portion, so it is not yet possible to determine if the remedy is operating as intended at that portion of the OU. However, once completed it is anticipated that the remedy will function as designed. Site controls implemented as a part of the RA mitigate the possibility for off-site transport and exposure to contaminated materials.

Question B: Are the exposure assumptions, toxicity data, cleanup levels, and remedial action objectives used at the time of remedy selection still valid?

Yes. The exposure assumptions, toxicity data, risk assessment methods, and RAOs at the time of the ROD are still valid.

Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

No. No additional information has been identified that would call into question the protectiveness of the remedy.

B. Operable Unit 3

Question A: Is the remedy functioning as intended by the decision documents?

Yes. The landfill remedy (capping and containment) is operating and functioning as intended by the ROD and the Consent Order. The landfill cap is generally in good condition and prevents PCB-contaminated material in the landfill from migrating, via erosion or surface water runoff, into the Kalamazoo River. The cap is also an effective barrier that prevents exposure, via direct contact, to the contaminated material by on-site workers, trespassers, and anglers. The cap also minimizes infiltration of rainwater and reduces the potential for leachate generation and, consequently, the migration of PCBs in groundwater into the Kalamazoo River. PCBs were not detected in groundwater above the performance standard.

Access restrictions are in place and prevent exposure to the contaminated material. The locked chain-link fence and sheet piling restricts public access to the landfill via Route M-89 and via the Kalamazoo River. Warning signs are posted every 200 feet along the perimeter fence notifying the public that the area is hazardous due to the buried paper-making residuals. Although not required at the time of this five-year review, permanent markers were installed along the MDOT property to demarcate the extent of residuals left in place. Signs have been posted on all entry gates and every 200 feet along the chain link fence.

As previously discussed, not all institutional controls are in place. However, the objectives of the ICs are being met since the public is not directly exposed to PCB-contaminated residuals or to PCBs via groundwater. The landfill property is zoned industrial and will remain industrial in the future via local zoning ordinances and the anticipated deed restrictions. Groundwater at the landfill property is not used for any purpose; therefore, there are no exposure pathways to on-site workers or the public from groundwater. All immediate threats have been addressed and no additional actions, other than the recommended actions identified in Section VIII of this five-year review, are anticipated.

Methane gas has migrated off-site in concentrations that exceed threshold criteria. However, Georgia-Pacific has constructed gas collection trenches to address this issue and additional

monitoring locations have been established to evaluate the effectiveness of the mitigation efforts.

Question B: Are the exposure assumptions, toxicity data, cleanup levels, and remedial action objectives used at the time of remedy selection still valid?

Yes, except that since the date of the Consent Order implementing the ROD, the Michigan cleanup standard for PCBs in soil has become less stringent. The exposure assumptions, toxicity data, risk assessment methods, and RAOs at the time of the ROD are still valid. However, when the ROD was issued, the State of Michigan Part 201 limited industrial cleanup criterion for PCBs in soil was 21 mg/kg and when the Consent Order for RD/RA was signed, the industrial cleanup criterion for direct contact with PCBs in soil was 9.9 mg/kg. Today, the PCB industrial land use criteria is 16 mg/kg for PCBs in soil. The landfill and the Mill Lagoons were remediated to achieve the industrial land use criterion of 9.9 mg/kg as specified in the Consent Order. Because the landfill and Mill Lagoons were remediated to a level that is below today's standards, the change in cleanup levels has no effect on the protectiveness of the OU3 remedy. The remedy is progressing as expected and is achieving the RAOs.

Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

No. Methane migration could be an issue as it is occasionally detected outside of the capture zone of the gas collection trenches outside of the Georgia-Pacific property, and always detected at those gas wells within the perimeter fence above the lower explosive limit. It is possible that this issue is now very localized to GW-13. Additional gas collection trenches have been installed along with new monitoring locations, though more may be required. Continued monitoring is necessary and will be conducted to determine if this is an issue in the future.

B. Operable Unit 4

Question A: Is the remedy functioning as intended by the decision documents?

No. The major activities involved in construction of the landfill are complete, and EPA approved the Certification of Remedial Action Completion in early October 2012. Although ICs are in place, engineered access restrictions are inadequate to protect trespassers from damaging the components of the remedy, and the lack of access controls could potentially result in future exposure to PCB-contaminated material. Except for the lack of access controls, it appears that the rest of the remedy is operating as intended. EPA has agreed to let Weyerhaeuser evaluate access controls as a part of its evaluation of the landfill as a wildlife viewing area. This evaluation should be complete by the end of 2012.

Question B: Are the exposure assumptions, toxicity data, cleanup levels, and remedial action objectives used at the time of remedy selection still valid?

Yes. The exposure assumptions and RAOs used at the time of the remedy selection are still valid. The OU4 ROD did not specify cleanup numbers for industrial soils. Instead, the ROD

established visual criteria as the primary method by which PCB-contaminated material would be identified. Post-excavation sampling was then compared to Michigan Part 201 criteria; specifically, confirmation samples at OU4 were compared to the residential/commercial criterion of 4 mg/kg PCB.

Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

No. No additional information has been identified that would call into question the protectiveness of the remedy.

VIII. Issues

The tables in this section highlight the issues identified for OU2, OU3 and OU4 during the five-year review, based upon document reviews and discussions with the MDEQ project manager(s).

Willow Boulevard/A-Site Landfill OU2

No issues were identified at OU2.

King Highway Landfill OU3

MDEQ has not yet approved the Construction Completion Report and it may require further revision and augmentation before approval. Monitoring and maintenance of the landfill needs improvement.

Some of the landfill remedy components were built on properties that are not owned by Georgia-Pacific. These properties are located within the security fence at OU3, but are owned by MDOT and the City of Kalamazoo. Georgia-Pacific needs to continue to work toward resolution of this issue and implement the necessary ICs.

The following table summarizes the issues at OU3 that affect the protectiveness of the remedy.

Table 7: Issues Identified at OU3

Issues	Affects Current Protectiveness	Affects Future Protectiveness
Effective ICs are needed on all site properties and need to be monitored and maintained. Institutional controls are needed for the landfill property and the land located within the site security fence that is currently owned by MDOT and the City of Kalamazoo. Additionally, MDEQ will not approve the Final Completion of Construction Report and the Final O&M Plan until the MDOT and City of Kalamazoo property ownership issues are resolved. Until these reports are approved, MDEQ cannot issue a Certification of Completion of Construction for the landfill and without this certification, under the terms of the agreement between MDEQ and Georgia-Pacific, the appropriate restrictive covenants cannot be recorded with the Kalamazoo County Register of Deeds.	No	Yes
Methane gas has migrated off-site in concentrations that exceed threshold criteria and will need to be mitigated.	No	Yes

12th Street Landfill OU4

The following table summarizes the issues at OU4 that affect the protectiveness of the remedy.

Table 8: Issues Identified at OU4

Issues	Affects Current Protectiveness	Affects Future Protectivenes s
Access controls are inadequate. A chain-link fence is present along the south side of the landfill but there is no fence on the north, east, or west sides of the landfill. Trespassers and anglers can freely enter the property and use the river banks to fish and have access to the landfill cap and associated gas vents. Additionally, the fence on the southern side of the landfill does not restrict foot traffic. The current access configuration does not prevent vandals from damaging the remedy.	No	Yes
Ongoing erosion at the toe of the landfill over the pore water collection discharge area.	No	Yes

IX. Recommendations and Follow-Up Actions

The recommended follow-up actions to address the issues identified in Section VIII of this report for OU3 and OU4 are presented in Table 9 and Table 10, respectively.

Table 9: Recommendations and Follow-Up Actions for OU3

Table 9: Recommenda	don's and i one	W-Op Actio	113 101 0			
Issue	Recommendations and Follow-up Actions	Party Responsible	Oversight Agency	Milestone Date	Affe Protecti Current	ects veness Future
Effective ICs are needed on all site properties and need to be monitored and maintained. Institutional controls are needed for the landfill property and the land located within the site security fence that is currently owned by MDOT and the City of Kalamazoo. Additionally, MDEQ will not approve the Final Completion of Construction Report and the Final O&M Plan until the MDOT and City of Kalamazoo property ownership issues are resolved. Until these reports are approved, MDEQ cannot issue a Certification of Completion of Construction for the landfill and without this certification, under the terms of the agreement between MDEQ and Georgia-Pacific, the appropriate restrictive covenants cannot be recorded with the Kalamazoo County Register of Deeds.	Submit a plan to MDEQ and EPA for 1) resolving property ownership issues with respect to the MDOT and City of Kalamazoo properties, 2) finalizing the Final Completion of Construction Report and the Final O&M Plan, and 3) implementing all required ICs.	PRP	EPA and MDEQ	October 2013	No	Yes
Methane gas has migrated off- site in concentrations that exceed threshold criteria and will need to be mitigated.	Submit an updated landfill gas mitigation plan to MDEQ that will satisfy its concerns about the off-site mitigation of methane gas at the south end of the landfill.	PRP	EPA and MDEQ	October 2013	No	Yes

Table 10: Recommendations and Follow-Up Actions for OU4

Issue	Recommendations and	Party	Oversight	Milestone	Affects Protectiveness	
10000	Follow-up Actions	Responsible	Agency	Date	Current	Future
Access controls are inadequate. A chain-link fence is present along the south side of the landfill but there is no fence on the north, east, or west sides of the landfill. Trespassers and anglers can freely enter the property and use the river banks to fish and have access to the landfill cap and associated gas vents. Additionally, the fence on the southern side of the landfill does not restrict foot traffic. The current access configuration does not prevent vandals from damaging the remedy.	Complete evaluation of access controls along with evaluation of potential use of OU4 as an eco-park (i.e., wildlife viewing area) so that final decisions about long-term access controls can be made.	PRP	EPA and MDEQ	December 2012	No	Yes
Ongoing erosion at the toe of the landfill over the pore water collection discharge area.	Repair or reconstruct drainage feature at toe of landfill.	PRP	EPA and MDEQ	October 2013	No	Yes

X. Protectiveness Statements

The remedy at OU2 is expected to be protective of human health and the environment upon completion of the remedy, and in the interim, exposure pathways that could result in unacceptable risks are being controlled. The RA for OU2 began in April 2011 and is expected to be completed in 2013. During 2011, the waste at the Willow Boulevard Landfill portion of OU2 was consolidated and covered with an impermeable cap. The vegetated soil cover for this portion of OU2 was installed in 2012. EPA expects the installation of the impermeable cover at the A-Site portion of OU2 to be completed in 2012 and the installation of the OU2-wide groundwater monitoring system to be completed in 2013. Institutional controls restricting the use of site groundwater, site use, and for protection of the remedy were recorded and filed in 2010. Once the RA is completed EPA expects the remedy at OU2 to be protective of human

health and the environment. EPA will make that determination by inspecting the landfill cover and evaluating groundwater and methane monitoring data. In addition, there is a restrictive covenant in place that restricts certain use of the property including use that interferes with measures necessary to assure the effectiveness and integrity of the remedial action and use of site groundwater.

The remedy at OU3 currently protects human health and the environment in the short term. The landfill cap is generally in good condition and prevents PCB-contaminated material in the landfill from migrating, via erosion or surface water runoff, into the Kalamazoo River. The cap is also an effective barrier that prevents exposure, via direct contact, to the contaminated material by on-site workers, trespassers, and anglers. The cap also minimizes infiltration of rainwater and reduces the potential for leachate generation and the potential for PCBs in groundwater to migrate into the Kalamazoo River. Public access to the landfill is restricted by a locked chainlink fence and sheet pile, which prevents people from being exposed to the contaminated material. Methane generated within the landfill is passively managed and mitigated by gas collection trenches installed outside of the landfill. These trenches are largely effective with methane only occasionally detected at off-site probes beyond the lateral extent of the trenches. Additional trenching (or some alternative) may need to be installed to extend the lateral capture of methane migration at the OU3 boundary. Some ICs are in place at OU3, but require revision, while other ICs are not yet in place. In order for the remedy to be protective in the long term, the following actions will need to be taken: (1) implement revised and new ICs; (2) mitigate any off-site migration of methane gas, and (3) properly maintain the landfill. Long-term protectiveness requires compliance with effective ICs. EPA will ensure that long-term stewardship of OU3, as well as every other operable unit of the Site, includes implementation and maintenance of each component of the selected remedy, including any necessary ICs, and proper maintenance of the landfill.

The remedy at OU4 currently protects human health and the environment in the short term. The remedy has been constructed, and exposure pathways that could result in unacceptable risks are being controlled. The following issues need to be addressed as part of O&M at OU4: 1) erosion is occurring at the toe of the landfill where water exits the soil cover drainage feature, and 2) the current access controls do not prevent trespass. Weyerhaeuser, a PRP for OU4, will evaluate additional access controls. Evaluation of groundwater monitoring data will continue until sufficient data is available to determine contaminant trends. Long-term protectiveness requires compliance with existing ICs. Since the last five-year review, the ICs at OU4 have been modified to include a groundwater use prohibition. EPA will ensure that long-term stewardship of OU4, as well as every other operable unit of the Site, includes implementation and maintenance of each component of the selected remedy, including any necessary ICs.

XI. Next Review

The next five-year review for the Allied Paper, Inc./Portage Creek/Kalamazoo River Site is required within five years from the signature date of this review.

Attachments

Attachment 1: Site Maps (Figures 1-11)

Attachment 2: Post-Closure Monitoring Groundwater Sample Results 2007-2012

Attachment 3: Photos Documenting Site Conditions

Attachment 4: Site Inspection Report

Attachment 5: Restrictive Covenant for OU2 Attachment 6: Restrictive Covenant for OU4 Attachment 7: Restrictive Covenant for OU7

Appendices

Appendix A: Newspaper Public Notices

Appendix B: List of Documents Reviewed for the Five-Year Review

Appendix C: List of Data Reviewed for the Five-Year Review

Attachment 1
Site Maps (Figures 1-11)

FIGURE 1 - Site Location Map

NOTE:

KALAMAZOO COUNTY MAPPING OBTAINED FROM MICHIGAN RESOURCE INFORMATION SYSTEM.

KALAMAZOO RIVER STUDY GROUP
ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE
REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY
WILLOW BOULEVARD/A—SITE OU

FIGURE 4 - OU2 Location Map

P: DJA-G3-4 2/22/01 SYR-54-DJO JER GMS 64581640/64581GO3.DWG

ELEVATION CONTOUR (NGVD 1929)

UNPAVED ROAD/TRAIL APPROXIMATE A-SITE BOUNDARY

GEORGIA-PACIFIC PROPERTY BOUNDARY OUTSIDE OF A-SITE

FORMER LAGOON AREA

EXISTING SHEETPILE WALL

NOTES:

- 1. UNLESS OTHERWISE INDICATED ALL SAMPLE LOCATIONS SURVEYED BY WADE—TRIM INC. OCTOBER 1993 THROUGH AUGUST 1996. SAMPLES ARN-1 THROUGH ARN-5 AND WRN-1 THROUGH WRN-5 WERE SURVEYED BY BBL JULY 1993.
- 2. TOPOGRAPHIC MAPPING PRODUCED USING PHOTOGRAMMETRIC METHODS BY LOCKWOOD, INC. FROM AERIAL PHOTOGRAPHY FLOWN APRIL 1991. KALAMAZOO RIVER SOUTH BANK, EAST OF DAVIS CREEK REVISED PER CURRENT CONDITIONS. ADDITIONAL TOPOGRAPHIC CHANGES AFTER APRIL 1991 ARE NOT SHOWN.
- 3. ALL LOCATIONS ARE APPROXIMATE.

KALAMAZOO RIVER STUDY GROUP
ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY WILLOW BOULEVARD/A—SITE OU

FIGURE 5 - OU2 Site Plan

REFERENCE: Base Map Source: USGS 7.5 Min. Topo. Quad., Kalamazoo, MI (1967, Photorevised 1973).

ALLIED PAPER, INC./PORTAGE CREEK KALAMAZOO RIVER SUPERFUND SITE EPA 5-YEAR REVIEW REPORT KHL-OU AND MILL LAGOONS

FIGURE 6 - OU3 Location Map

FIGURE 9 - OU4 Site Plan

The Seven Areas of Operable Unit 5 (The Kalamazoo River and Portage Creek)

Attachment 2 Post-Closure Monitoring Groundwater Sample Results 2007-2012

Attachment 2A
OU3 Results

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample ID	:	ATTREE	5.335	H85378	H85379	H85380	H85381	H85382	H85383	H85384	H85385	H85386	H85387	H85388	H85389
Well ID	Generic	The second second	1000	MW-7	MW-1AR	MW-2R	MW-16A	MW-11RR	Equip. Blank	MW-12B	MW-16B	MW-12AR	MW-13B	MW-8AR	DUP IMW-16A
	GSI	Specific							[MW-11RR]	02/07/07	02/07/07	02/07/07	02/07/07	02/08/07	02/08/07
Date Collected	: Values	WQBEL	Units	02/05/07	02/06/07	02/06/07	02/06/07	02/06/07	02/06/07	02/07/07	02/07/07	02/07/07	02/07/07	02/08/07	02/08/07
/OCs									I UD II OI	ND IS O	L ND IF OI	ND IF O	ND IS OI	ND IE OI	I ND IF O
Acetone	1,700		µg/L	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]
SVOCs															
4-Methylphenol ⁵	71		µg/L	ND [9.7]	ND [9.7]	ND [9.4]	ND [9.6]	ND [9.7]	ND [9.9]	ND [10]	ND [9.6]	ND [9.5]	ND [9.7]	ND [9.4]	ND [9.4]
Naphthalene	13		µg/L	ND [9.7]	ND [9.7]	ND [9.4]	ND [9.6]	ND [9.7]	ND [9.9]	ND [10]	ND [9.6]	ND [9.5]	ND [9.7]	ND [9.4]	ND [9.4]
Phenol	210		µg/L	ND [9.7]	ND [9.7]	ND [9.4]	ND [9.6]	ND [9.7]	ND [9.9]	ND [10]	ND [9.6]	ND [9.5]	ND [9.7]	ND [9.4]	ND [9.4]
PCBs	5 - (50)				Charles and the same										
Aroclor 1016			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.053]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1221			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.053]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1232			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.053]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1242			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.053]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1248			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.053]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1254			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.053]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1260			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.053]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Total PCBs	0.2		µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.053]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Metals						A CONTRACTOR OF THE PARTY OF TH	PHARMA NAMES	B.R					Market Care		
Barium		2,300	µg/L	78.2 B	413	214	442	424	ND [9.8]	283	519	668	225	499	501
Calcium			µg/L	172,000	221,000	157,000	168,000	151,000	476 B	134,000	152,000	210,000	144,000	196,000	197,000
Chromium ⁶	11		µg/L	ND [10]	ND [10]	ND [10]	ND [10]	ND [10]	1.3 B	ND [10]	ND [10]	ND [10]	ND [10]	ND [10]	ND [10]
Iron			µg/L	4,370	83,500	9,650	10,200	4,550	49.7 B	4,890	7,590	39,600	8,330	35,500	35,800
Sodium			µg/L	61,700	4,090 B	98,500	72,400	79,800	777 B	91,000	80,600	51,300	95,400	43,500	43,400
Thallium		160	µg/L	ND [6.9]	15.5 B	ND [6.9]	ND [6.9]	ND [6.9]	ND [6.9]	ND [6.9]	ND [6.9]	ND [6.9]	ND [6.9]	ND [6.9]	8.5 B
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	12		µg/L	ND [2.7]	ND [2.7]	ND [2.7]	ND [2.7]	ND [2.7]	ND [2.7]	ND [2.7]	ND [2.7]	ND [2.7]	ND [2.7]	ND [2.7]	ND [2.7]
Miscellaneous											No. of the last of	In the latest the late			
Bicarbonate Alkalinity			mg/L	430	740	460	510	450	1.8 B	370	480	810	390	620	630
Carbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chemical Oxygen Demand			mg/L	ND [20]	24.3	ND [20]	ND [20]	ND [20]	ND [20]	ND [20]	ND [20]	36.7	ND [20]	34.6	30.5
Hydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate/Nitrite Nitrogen			mg/L	0.032 B	ND [0.1]	0.085 B	ND [0.1]	ND [0.1]	ND [0.1]	0.037 B	ND [0.1]	ND [0.1]	ND [0.1]	0.039 B	ND [0.1]
Sulfate			mg/L	140	2.4	34	51	62	ND [0.2]	76	42	3.2	69	15	14
Total Alkalinity			mg/L	430	740	460	510	450	1.8 B	370	480	810	390	620	630
Total Organic Carbon			mg/L	3.8	6.4	4.1	7.7	5	ND [1]	1.9	7.6	14.8	3.2	7.2	7.1
Total Suspended Solids			mg/L	39.2	51.3	12.8	17.4	12.6	ND (0.5)	10.6	16.9	23.2	9.2	20.1	20.1

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample ID	: 000000	1989	23.8	H85390	H85391	H85392	H85393	H85394	H85395	H85396	H85397	H85398	H85399	H85400	H85401
Well ID	Generic	Site	N. S.	MW-13AR	MW-8BR	MW-14AR	MW-15AR	DUP IMW-15ARI	MW-3AR	MW-7	MW-2R	MW-1AR	MW-11RR	MW-16A	Equip. Blank
	GSI	Specific	300							05/07/07	05/08/07	05/08/07	05/08/07	05/08/07	[MW-11RR] 05/08/07
Date Collected	: Values	WQBEL	Units	02/08/07	02/08/07	02/09/07	02/09/07	02/09/07	02/09/07	05/07/07	05/08/07	05/08/07	06/08/07	00/00/07	U0/U0/U/
VOCs														114	1 111
Acetone	1,700		µg/L	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	NA	NA	NA	NA	NA	NA
SVOCs														THE REAL PROPERTY.	1000
4-Methylphenol ⁵	71		µg/L	ND [9.4]	ND [9.4]	ND [9.5]	ND [9.6]	ND [9.8]	ND [9.7]	ND [9.7]	ND [9.4]	ND [9.7]	ND [9.7]	ND [9.4]	ND [9.5]
Naphthalene	13		µg/L	ND [9.4]	ND [9.4]	ND [9.5]	ND [9.6]	ND [9.8]	ND [9.7]	ND [9.7]	ND [9.4]	ND [9.7]	ND [9.7]	ND [9.4]	ND [9.5]
Phenol	210		µg/L	ND [9.4]	ND [9.4]	ND [9.5]	ND [9.6]	ND [9.8]	ND [9.7]	NA	NA	NA	NA	NA	NA
PCBs												METAL MARKET NE		Add to the	
Aroclor 1016			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047]
Aroclor 1221			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047]
Aroclor 1232			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047]
Aroclor 1242			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047]
Aroclor 1248			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047]
Aroclor 1254			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047]
Aroclor 1260			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047]
Total PCBs	0.2		µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047]
Metals						THE PARTY.	Developed to the later of					THE RESERVE TO SERVE THE RESERVE THE RESERVE TO SERVE THE RESERVE THE RESER		3201	
Barium		2,300	µg/L	655	266	246	270	268	428	54.5 B	160 B	421	401	431	ND [11.5]
Calcium			µg/L	266,000	152,000	143,000	153,000	152,000	197,000	161,000	154,000	237,000	156,000	173,000	157 B
Chromium ⁶	11		µg/L	ND [10]	ND [10]	ND [10]	ND [10]	ND [10]	ND [10]	NA	NA	NA	NA	NA	NA
Iron			µg/L	66,100	9,620	8,780	9,800	9,720	61,100	3,790	8,490	97,300	4,350	10,900	ND [15.8]
Sodium			µg/L	13,900	103,200 E,J	116,100 E,J	141,500 E,J	140,200 E,J	72,200	52,400	64,200	3,920 B	82,200	71,300	351 B
Thallium		160	µg/L	ND [6.9]	ND [6.9]	ND [6.9]	ND [6.9]	ND [6.9]	7.7 B	ND [1.1]	ND [1.1]	ND [1.1]	ND [1.1]	ND [1.1]	ND [1.1]
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	12		µg/L	ND [2.7]	ND [2.7]	ND [2.7]	ND [2.7]	ND [2.7]	ND [2.7]	NA	NA	NA	NA	NA	NA
Miscellaneous								THE RESERVE		The State of the S					
Bicarbonate Alkalinity			mg/L	840	480	430	430	430	560	NA	NA	NA	NA	NA	I NA
Carbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chemical Oxygen Demand			mg/L	34.6	24.3 J	ND [20]	ND [20]	ND [20]	ND [20]	22.9	ND [20]	29.3	27.1	20.8	22.9
Hydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate/Nitrite Nitrogen			mg/L	ND [0.1]	ND [0.1]	ND [0.1]	ND [0.1]	ND [0.1]	0.9904	NA	NA	NA	NA	NA	NA
Sulfate			mg/L	3.9	43	65	73	74	30	NA	NA	NA	NA	NA	NA
Total Alkalinity			mg/L	840	480	430	430	430	560	NA	NA	NA	NA	NA	NA
Total Organic Carbon			mg/L	7.5	4.3	3.2	3.5	3.8	4.4	5.5	3.7	5.7	5.4	8.2	ND [1]
Total Suspended Solids			mg/L	22.9	8.8	19.5	21.3	19.7	54	NA	NA	NA	NA	NA	NA

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample ID:	The second second		1000	H85402	H85403	H85404	H85405	H85406	H85407	H85408	H85409	H85410	H85411	H85412	H85413
Well ID:	Generic	Site	1000	MW-12B	MW-16B	MW-12AR	MW-13B	MW-13AR	MW-8AR	DUP [MW-8AR]	MW-8BR	MW-15AR	DUP [MW-15AR]	MW-14AR	MW-3AR
	GSI	Specific	11-16-	05/09/07	05/09/07	05/09/07	05/09/07	05/09/07	05/10/07	05/10/07	05/10/07	05/10/07	05/10/07	05/10/07	05/11/07
OCs Date Collected:	values	WQBEL	Units	05/05/07	00/09/07	05/05/07	08/03/07	05/03/01	00/10/07	00/10/07	00/10/0/	00/10/07	1 00/10/07	00/10/01	00/11/07
	1 4 700		I weed I	NA	NIA	NA NA	NA	I NA I	NA	I NA I	NA	NA NA	T NA T	NA I	NA
cetone	1,700		µg/L	INA	NA	NA	INA	I NA	INA	INA	IVM	INA	INA	INA	INA
VOCs													I		
-Methylphenol ⁵	71		µg/L	ND [9.6]	ND [9.4]	3.9 J	ND [9.6]	ND [9.4]	ND [10]	ND [9.8]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.9]	ND [9.4
laphthalene	13		µg/L	ND [9.6]	ND [9.4]	ND [9.5]	ND [9.6]	ND [9.4]	ND [10]	ND [9.8]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.9]	ND [9.4
Phenol	210		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
CBs	Maria	37-1121			JASTER WILLIAM										
roclor 1016			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048] UJ	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.04
roclor 1221			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048] UJ	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.04
roclor 1232			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048] UJ	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.04
roclor 1242			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048] UJ	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.04
roclor 1248			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048] UJ	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.04
roclor 1254			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048] UJ	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.04
roclor 1260			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048] UJ	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.04
otal PCBs	0.2		µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048] UJ	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.04
fetals					No. of Physics and Party								MANUAL COLUMN		
Barium		2,300	µg/L	260	494	629	203	705	482	479	262	273	249	226	244
Calcium			µg/L	132,000	154,000	211,000	144,000	308,000	197,000	192,000	153,000	158,000	154,000	147,000	168,000
Chromium ⁶	11		µg/L	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
		-	µg/L	4.690	8,160	51,200	7,400	87,300	35,000	33,900	10,600	10,200	9,940	9,340	33.900
on			µg/L	89,500	81,400	41.300	96.000	9,040	52,700	51,200	99,600	154,000	150,000	118,000	104.000
on				ND [1.1]	ND [1.1]	ND [1.1]	ND [1.1]	ND [1.1]	ND [1.1]	ND [1.1]	ND [1.1]	ND [1.1]	ND [1.1]	ND [1.1]	ND [1.1
		160	I Ud/L I	NUII.II											NA
Sodium		160	µg/L µg/L	NA NA	NA NA	NA		NA NA	NA	NA	NA	I NA	I NA I	IVA	
Sodium Thallium							NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Sodium 'hallium Linc		1,200	µg/L	NA	NA	NA	NA								NA
Sodium Thallium Zinc Vanadium		1,200	µg/L	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
odium hallium linc 'anadium Miscellaneous Bicarbonate Alkalinity	12	1,200	μg/L μg/L	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
odium hallium inc 'anadium fiscellaneous Garbonate Alkalinity Carbonate Alkalinity	12	1,200	μg/L μg/L	NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
odium hallium inc anadium liscellaneous licarbonate Alkalinity arbonate Alkalinity chemical Oxygen Demand	12	1,200	μg/L μg/L mg/L mg/L	NA NA NA	NA NA	NA NA NA NA 37.7	NA NA NA NA ND [20]	NA NA NA 29.3	NA NA NA 25	NA NA NA 27.1	NA NA NA 22.9	NA NA NA 27.1	NA NA ND [20]	NA NA NA ND [20]	NA NA NA 31.4
odium hallium inc anadium liscellaneous icarbonate Alkalinity carbonate Alkalinity chemical Oxygen Demand lydroxide Alkalinity	12	1,200 	mg/L mg/L mg/L mg/L mg/L mg/L	NA NA NA NA 31.4	NA NA NA NA 33.5 NA	NA NA NA NA 37.7 NA	NA NA NA NA ND [20] NA	NA NA NA 29.3 NA	NA NA NA 25 NA	NA NA NA 27.1 NA	NA NA NA 22.9 NA	NA NA NA 27.1 NA	NA NA NA ND [20] NA	NA NA ND [20] NA	NA NA NA 31.4 NA
odium hallium inc anadium liscellaneous icarbonate Alkalinity arbonate Alkalinity chemical Oxygen Demand bydroxide Alkalinity litrate/Nitrite Nitrogen	12	1,200 	μg/L μg/L mg/L mg/L mg/L	NA NA NA NA 31.4 NA	NA NA NA NA 33.5 NA NA	NA NA NA NA 37.7 NA NA	NA NA NA NA ND [20] NA NA	NA NA NA 29.3 NA NA	NA NA NA 25 NA NA	NA NA NA 27.1 NA NA NA	NA NA NA 22.9 NA NA	NA NA NA 27.1 NA NA	NA NA NA ND [20] NA NA	NA NA ND [20] NA NA	NA NA NA 31.4 NA
iodium hallium iinc lanadium liscellaneous Bicarbonate Alkalinity Chemical Oxygen Demand hydroxide Alkalinity litrate/Nitrite Nitrogen	12	1,200 	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	NA NA NA NA 31.4 NA NA	NA NA NA NA 33.5 NA NA NA	NA NA NA NA 37.7 NA NA NA	NA NA NA NA ND [20] NA NA NA	NA NA NA 29.3 NA NA NA NA NA	NA NA NA 25 NA NA NA NA	NA NA NA 27.1 NA NA NA NA NA	NA NA NA 22.9 NA NA	NA NA NA 27.1 NA NA NA	NA NA ND [20] NA NA NA NA NA NA	NA NA ND [20] NA NA NA NA	NA NA 31.4 NA NA
Sodium Thallium Zinc /anadium /iscellaneous	12	1,200 	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	NA NA NA NA 31.4 NA NA NA	NA NA NA NA 33.5 NA NA	NA NA NA NA 37.7 NA NA	NA NA NA NA ND [20] NA NA	NA NA NA 29.3 NA NA	NA NA NA 25 NA NA	NA NA NA 27.1 NA NA NA	NA NA NA 22.9 NA NA	NA NA NA 27.1 NA NA	NA NA NA ND [20] NA NA	NA NA ND [20] NA NA	NA NA NA 31.4 NA

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample ID		101-25-25	1000	H85414	H85415	H85416	H85417	H85418	H85419	H85420	H85421	H85422	H85423	H85424	H85425
Well IC	Generic			MW-7	MW-2R	MW-11RR	Equip. Blank	MW-1AR	MW-16B	MW-16A	MW-12B	MW-13B	MW-12AR	MW-13AR	MW-8AR
	GSI	Specific	1000				[MW-11RR]					08/08/07	08/09/07	08/09/07	08/09/07
Date Collected	i: Values	WQBEL	Units	08/06/07	08/06/07	08/08/07	08/08/07	08/08/07	08/08/07	08/08/07	08/08/07	08/08/07	08/09/07	00/09/07	08/09/07
/OCs								NIA	1 110	l NIA	I NA	I NA	I NA I	NA	I NA
Acetone	1,700		µg/L	NA	NA	NA	NA	NA	NA	NA	INA	NA NA	INA	INA	I NA
SVOCs															
4-Methylphenol ⁵	71		µg/L	ND [9.8]	ND [9.6]	ND [9.4]	ND [9.8]	ND [10]	ND [10]	ND [10]	ND [10]	ND [9.4]	ND [9.4]	ND [9.5]	ND [10]
Naphthalene	13		µg/L	ND [9.8]	ND [9.6]	ND [9.4]	ND [9.8]	ND [10]	ND [10]	ND [10]	ND [10]	ND [9.4]	ND [9.4]	ND [9.5]	ND [10]
Phenol	210		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs														THE PROPERTY OF THE PARTY OF TH	THE PERSON NAMED IN
Aroclor 1016			µg/L	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.05]	ND [0.051]	ND [0.049]	ND [0.049]	ND [0.051]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.053]
Aroclor 1221			µg/L	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.05]	ND [0.051]	ND [0.049]	ND [0.049]	ND [0.051]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.053]
Aroclor 1232			µg/L	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.05]	ND [0.051]	ND [0.049]	ND [0.049]	ND [0.051]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.053]
Aroclor 1242			µg/L	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.05]	ND [0.051]	ND [0.049]	ND [0.049]	ND [0.051]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.053]
Aroclor 1248			µg/L	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.05]	ND [0.051]	ND [0.049]	ND [0.049]	ND [0.051]	ND [0.048]	ND [0.047] UJ	ND [0.048]	ND [0.053]
Aroclor 1254			µg/L	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.05]	ND [0.051]	ND [0.049]	ND [0.049]	ND [0.051]	ND [0.048]	ND [0.047] UJ	ND [0.048]	ND [0.053]
Aroclor 1260			µg/L	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.05]	ND [0.051]	ND [0.049]	ND [0.049]	ND [0.051]	ND [0.048]	ND [0.047] UJ	ND [0.048]	ND [0.053]
Total PCBs	0.2		µg/L	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.05]	ND [0.051]	ND [0.049]	ND [0.049]	ND [0.051]	ND [0.048]	ND [0.047] UJ	ND [0.048]	ND [0.053]
Metais													A Company of the latest		
Barium		2,300	µg/L	68.8 B	157 B	417	ND [11.1]	410	407	476	272	198 B	613	558	475
Calcium			µg/L	168,000	154,000	160,000	ND [884]	233,000	169,000	153,000	140,000	146,000	216,000	243,000	202,000
Chromium ⁶	11		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron			µg/L	4,650	10,100	5,850	ND [18.6]	98,400	11,300	7,940	5,590	6,960	51,400	62,400	27,700
Sodium			µg/L	64,800	100,000	86,400	ND [1,230]	2,530 B	76,000	83,000	94,300	100,000	60,800	43,200	86,300
Thallium		160	µg/L	ND [6] UJ	ND [6] UJ	ND [6] UJ	ND [6] UJ	ND [6] UJ	ND [6] UJ	ND [6] UJ	ND [6] UJ	ND [6] UJ	ND [6] UJ	ND [6] UJ	ND [6] UJ
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	12		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous															
Bicarbonate Alkalinity			mg/L	NA	NA	NA	NA I	NA	NA	NA	NA	NA NA	I NA I	NA	l NA
Carbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA	NA
Chemical Oxygen Demand			mg/L	ND [20]	25.2	ND [20]	ND [20]	ND [20]	ND [20]	ND [20]	ND [20]	ND [20]	35.8	23	37.9
Hydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate/Nitrite Nitrogen			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA	NA
Sulfate			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA	NA
Total Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
								American							
Total Organic Carbon			mg/L	4.1	4	5.7	ND [1]	5.6	7.5	6.9	2.3	3.1	13.3	8.7	14.3

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample I		100250	1000	H85426	H85427	H85428	H85429	H85430	H85431	H85432	H85433	H85434	H85435	H85437	H85438
Well I	D. Generic	Site	250	DUP IMW-8AR1	MW-8BR	MW-15AR	DUP [MW-15AR]	MW-14AR	MW-3AR	MW-7	MW-1AR	MW-2R	MW-11RR	MW-16A	MW-12B
	GSI	Specific	B 286		08/09/07	08/10/07	08/10/07	08/10/07	08/10/07	10/29/07	10/30/07	10/30/07	10/30/07	10/30/07	10/30/07
Date Collecte	ed: Values	WQBEL	Units	08/09/07	08/09/07	08/10/07	08/10/07	08/10/0/	08/10/07	10/29/07	10/30/07	10/30/07	10/30/07	10/30/07	10/30/07
OCs	1 1700			111	ALA	1 114	I NA I	NA	NIA	I NA	NA	I NA	l NA	I NA	NA
cetone	1,700		µg/L	NA	NA	NA	NA	NA	NA	I NA	NA	INA .	INA	INA	INA
SVOCs															
-Methylphenol ⁵	71		µg/L	ND [10]	ND [9.5]	ND [10]	ND [10]	ND [9.7]	ND [9.4]	ND [9.6]	ND [9.4]	ND [9.4]	ND [9.6]	ND [10]	ND [10]
Naphthalene	13		µg/L	ND [10]	ND [9.5]	ND [10]	ND [10]	ND [9.7]	ND [9.4]	ND [9.6]	ND [9.4]	ND [9.4]	ND [9.6]	ND [10]	ND [10]
Phenol	210		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBs															
Aroclor 1016			µg/L	ND [0.051]	ND [0.048]	ND [0.051] UJ	ND [0.05] UJ	ND [0.05]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.047]
Aroclor 1221			µg/L	ND [0.051]	ND [0.048]	ND [0.051] UJ	ND [0.05] UJ	ND [0.05]	ND [0.048]	ND [0.048] UJ	ND [0.047] UJ	ND [0.047] UJ	ND [0.048] UJ	ND [0.047] UJ	ND [0.047] L
Aroclor 1232			µg/L	ND [0.051]	ND [0.048]	ND [0.051] UJ	ND [0.05] UJ	ND [0.05]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.047]
Aroclor 1242			µg/L	ND [0.051]	ND [0.048]	ND [0.051] UJ	ND [0.05] UJ	ND [0.05]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.047]
Aroclor 1248			µg/L	ND [0.051]	ND [0.048]	ND [0.051] UJ	ND [0.05] UJ	ND [0.05]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.047]
Aroclor 1254		-	µg/L	ND [0.051]	ND [0.048]	ND [0.051] UJ	ND [0.05] UJ	ND [0.05]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.047
Aroclor 1260			µg/L	ND [0.051]	ND [0.048]	ND [0.051] UJ	ND [0.05] UJ	ND [0.05]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.047
Total PCBs	0.2		µg/L	ND [0.051]	ND [0.048]	ND [0.051] UJ	ND [0.05] UJ	ND [0.05]	ND [0.048]	ND [0.048] UJ	ND [0.047] UJ	ND [0.047] UJ	ND [0.048] UJ	ND [0.047] UJ	ND [0.047] L
Metals						Marie Marie Co.									
Barium		2,300	µg/L	483	300	255 J	252 J	253 J	202 J	70.9 B	314	236	434	410	268
Calcium			µg/L	207,000	179,000	158,000 J	156,000 J	160,000 J	159,000 J	156,000	193,000	185,000	153,000	165,000	139,000
Chromium ⁶	11		µg/L	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron			µg/L	28,600	14,600	10,100 J	10,100 J	11,100 J	14,500 J	2,510	65,400	14,900	5,110	9,690	5,110
Sodium	-		µg/L	88,200	103,000	153,000 J	152,000 J	112,000 J	157,000 J	73,000	4,420 B	69,500	84,300	76,700	94,600
Thallium		160	µg/L	ND [6] UJ	ND [6] UJ	ND [6] UJ	ND [6] UJ	ND [6] UJ	ND [6] UJ	ND [0.9]	ND [0.9]	ND [0.9]	ND [0.9]	ND [0.9]	ND [0.9]
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	12		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous															
Bicarbonate Alkalinity			mg/L	NA	NA	NA NA	I NA I	NA	NA	I NA	NA	I NA	I NA	I NA	NA NA
Carbonate Alkalinity		-	mg/L	NA	NA	NA	NA I	NA	NA	NA	NA	NA	NA	NA NA	NA
01 1 10 0 1			mg/L	33.7	ND [20]	ND [20] UJ	ND [20] UJ	ND [20] UJ	ND [20] UJ	ND [20] UJ	30.2 J	ND [20] UJ	ND [20] UJ	22 J	ND [20] U.
Chemical Oxygen Demand			mg/L	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA
					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
Hydroxide Alkalinity		-	ma/L	NA	IVA					1.47.3		1.1/13	14/4	LAM	
Hydroxide Alkalinity Nitrate/Nitrite Nitrogen				NA NA				NA	NA	NA	NA	NA	NA	NA	NA
Hydroxide Alkalinity Nitrate/Nitrite Nitrogen Sulfate		-	mg/L	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chemical Oxygen Demand Hydroxide Alkalinity Nitrate/Nitrite Nitrogen Sulfate Total Alkalinity Total Organic Carbon		-						NA NA 4.5 J	NA NA 4 J	NA NA 3.2	NA NA 7	NA NA 4.5	NA NA 6.1	NA NA 7.5	NA NA 2.3

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample ID		100000	100	H85439	H85440	H85441	H85442	H85443	H85444	H85445	H85446	H85447	H85448	H85449	H85450
Well ID	Generic	Site		MW-16B	MW-13B	MW-12AR	MW-13AR	MW8BR	MW-8AR	DUP [MW-8AR]	MW-14AR	DUP [MW-14AR]	MW-3AR	MW-15AR	MW-2R
	GSI	Specific	I Late	10/30/07	10/31/07	10/31/07	10/31/07	10/31/07	10/31/07	10/31/07	11/01/07	11/01/07	11/02/07	11/02/07	02/11/08
Date Collected	Values	WQBEL	Units	10/30/07	10/3//0/	10/3 1/07	10/31/07	10/3/10/	10/3/10/	10/01/01	11/01/07	11101101	11102101	11/02/07	02/1//00
OCs	1,700	-	µa/L	NA NA	I NA	l NA	NA NA	NA	NA NA	I NA I	NA	I NA I	NA	NA T	ND [5]
cetone	1,700		µg/L	INA	INA	INA	IVA	INA	INA	INA	INO	147	INA	· NA	140 [0]
SVOCs								110 10 11	110 10 01	I ND to ot I	ND 10 41	I ND to ti	ND 10 TI	ND 10 01	ND IO EI
-Methylphenol ⁵	71		µg/L	ND [9.7]	ND [9.4]	ND [9.6]	ND [9.4]	ND [9.4]	ND [9.6]	ND [9.8]	ND [9.4]	ND [9.4]	ND [9.7]	ND [9.8]	ND [9.5]
Naphthalene	13		µg/L	ND [9.7]	ND [9.4]	ND [9.6]	ND [9.4]	ND [9.4]	ND [9.6]	ND [9.8]	ND [9.4]	ND [9.4]	ND [9.7]	ND [9.4]	ND [9.5]
Phenol	210		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND [9.5]
CBs															
Aroclor 1016			µg/L	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.046]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049
Aroclor 1221			µg/L		ND [0.047] UJ	ND [0.047] UJ	ND [0.047] UJ	ND [0.047] UJ	ND [0.047] UJ	ND [0.048] UJ	ND [0.046] UJ	ND [0.049] UJ	ND [0.049] UJ	ND [0.049] UJ	ND [0.049
Aroclor 1232		***	µg/L	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.046]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049
Aroclor 1242			µg/L	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.046]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049
Aroclor 1248			µg/L	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.046]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049
Aroclor 1254			µg/L	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.046]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049
Aroclor 1260			µg/L	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.046]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049
Total PCBs	0.2		µg/L	ND [0.047] UJ	ND [0.047] UJ	ND [0.047] UJ	ND [0.047] UJ	ND [0.047] UJ	ND [0.047] UJ	ND [0.048] UJ	ND [0.046] UJ	ND [0.049] UJ	ND [0.049] UJ	ND [0.049] UJ	ND [0.049
Metals						A THE PARTY OF THE	MARKET STATES				ALCOHOLD BY				
Barium		2,300	µg/L	477	211	638	685	286	550	559	250	256	649	253	223
Calcium			µg/L	150,000	151,000	220,000	286,000	166,000	235,000	239,000	158,000	160,000	239,000	154.000	151,000
Chromium ⁶	11		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND [10]
ron			µg/L	7,390	7.840	50,800	69.500	12.500	33.800	34.000	11.000	11.200	51.500	9.600	14.400
Sodium			µg/L	84,400	101,000	72,700	28,600	114,000	40.300	39,400	113,000	115,000	78,300	142.000	64,100
hallium		160	µg/L	ND [0.9]	ND [0.9]	ND [0.9]	ND [0.9]	ND [0.9]	ND [0.9]	ND [0.9]	ND [0.9]	ND [0.9]	ND [0.9]	ND [0.9]	ND [0.67
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
/anadium	12		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.1 B
Miscellaneous										-1-/					
Bicarbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	I NA I	NA	I NA I	NA	I NA I	NA
Carbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA NA	NA	NA I	NA	NA NA	NA
Chemical Oxygen Demand			mg/L	26.1 J	26.1 J	48.6 J	40.5 J	ND [20] UJ	26.1 J	24.1 J	ND [20] UJ	ND [20] UJ	24.1	26.1 J	ND [20]
lydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA
litrate/Nitrite Nitrogen			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA	NA NA	ND [100]
sulfate			mg/L	NA	NA	NA	NA	NA	NA	NA I	NA	NA	NA	NA NA	19
otal Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA I	NA	NA I	NA	NA NA	460
otal Organic Carbon			mg/L	6	3	13.6	9.2	5	9	7.9	4.7	4.7	6.5	5.6	400

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample ID	:	150 ASS.	200	H85451	H85452	H85453	H85455	H85456	H85457	H85458	H85459	H85460	H85461	H85462	H85463
Well ID	Generic	Site		MW-17	MW-1AR	MW-11RR	MW-16A	MW-16AB	MW-12AR	MW-12B	MW-8BR	MW-13B	MW-13AR	MW-8AR	DUP [MW-8AF
Date Collected	GSI	Specific WQBEL	Units	02/11/08	02/12/08	02/12/08	02/12/08	02/13/08	02/13/08	02/13/08	02/14/08	02/14/08	02/14/08	02/14/08	02/14/08
OCs Date Collected	. values	WORL	Units	0211100	02/12/00	02/12/00	02/12/00	02110100	1 02 10100	02.10.00					
cetone	1.700		µg/L	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]
SVOCs	1,100		1 -51						Value of the last						
4-Methylphenol ⁵	71		ua/L	ND [9.8]	ND [9.9]	ND [9.5]	ND [9.8]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.4]
Naphthalene	13		µg/L	ND [9.8]	ND [9.9]	ND [9.5]	ND [9.8]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9,4]	ND [9.4]	ND [9.4]
Phenol	210		µg/L	ND [9.8]	ND [9.9]	ND [9.5]	ND [9.8]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.4]
CBs	2.10		1 1-31		110 (0.0)	11.5 (0.15)									The system of th
Aroclor 1016			ua/L	ND [0.05]	ND [0.05]	ND [0.049]	ND [0.049]	ND [0.05]	ND [0.047]	ND [0.05]	ND [0.052]	ND [0.052]	ND [0.048]	ND [0.05]	ND [0.05]
Aroclor 1221			µg/L	ND [0.05]	ND [0.05]	ND [0.049]	ND [0.049]	ND [0.05]	ND [0.047]	ND [0.05]	ND [0.052]	ND [0.052]	ND [0.048]	ND [0.05]	ND [0.05]
Aroclor 1232		***	µg/L	ND [0.05]	ND [0.05]	ND [0.049]	ND [0.049]	ND [0.05]	ND [0.047]	ND [0.05]	ND [0.052]	ND [0.052]	ND [0.048]	ND [0.05]	ND [0.05]
Aroclor 1242			µg/L	ND [0.05]	ND [0.05]	ND [0.049]	ND [0.049]	ND [0.05]	ND [0.047]	ND [0.05]	ND [0.052]	ND [0.052]	0.066	ND [0.05]	ND [0.05]
Aroclor 1248			µg/L	ND [0.05]	ND [0.05]	ND [0.049]	ND [0.049]	ND [0.05]	ND [0.047]	ND [0.05]	ND [0.052]	ND [0.052]	ND [0.048]	ND [0.05]	ND [0.05]
Aroclor 1254			µg/L	ND [0.05]	ND [0.05]	ND [0.049]	ND [0.049]	ND [0.05]	ND [0.047]	ND [0.05]	ND [0.052]	ND [0.052]	ND [0.048]	ND [0.05]	ND [0.05]
Aroclor 1260			µg/L	ND [0.05]	ND [0.05]	ND [0.049]	ND [0.049]	ND [0.05]	ND [0.047]	ND [0.05]	ND [0.052]	ND [0.052]	ND [0.048]	ND [0.05]	ND [0.05]
Total PCBs	0.2		µg/L	ND [0.05]	ND [0.05]	ND [0.049]	ND [0.049]	ND [0.05]	ND [0.047]	ND [0.05]	ND [0.052]	ND [0.052]	0.066	ND [0.05]	ND [0.05]
Metals	POSITION.	Trumble			Maria Carlos				Later Control	(A) M CONTRACTOR			LATER STREET		
Barium		2,300	µg/L	67.5 B	305	423	397	516	567	286	252	200 B	891	354	353
Calcium			µg/L	159,000	206,000	156,000	169,000	163,000	195,000	147,000	154,000	145,000	307,000	199,000	198,000
Chromium ⁶	11		µg/L	ND [0.14]	ND [0.14]	ND [10]	ND [10]	ND [10]	ND [10]	ND [10]	ND [10]	ND [10]	ND [10]	ND [0.14]	ND [10]
Iron			µg/L	3,120	70,600	4,180	8,590	8,310	47,200	5,370	10,300	7,200	95,100	34,700	34,500
Sodium			µg/L	71,500	4,480 B	87,900	76,600	88,800	71,500	98,700	109,000	102,000	3,940 B	14,700	19,200
Thallium		160	µg/L	ND [0.67]	ND [0.67]	ND [0.67]	ND [0.67]	ND [0.67]	ND [0.67]	ND [0.67]	ND [0.67]	ND [0.67]	ND [0.67]	ND [0.67]	ND [0.67]
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	12		μg/L	0.97 B	1.5 B	2 B	1.7 B	1.5 B	2 B	1.2 B	0.83 B	0.89 B	1.2 B	1.3 B	1.1 B
Miscellaneous															
Bicarbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chemical Oxygen Demand			mg/L	ND [20]	28.2	ND [20]	24.1	24.1	52.7 J	ND [20]	ND [20]	ND [20]	22	ND [20]	ND [20]
Hydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate/Nitrite Nitrogen			mg/L	ND [100]	ND [100]	ND [100]	ND [100]	ND [100]	ND [100]	ND [100]	ND [100]	ND [100]	ND [100]	ND [100]	ND [100]
Sulfate			mg/L	110	0.53	53	50	35	0.75	77	38	61	10	8.5	9.4
Total Alkalinity			mg/L	420	580	460	520	480	680	380	440	400	910	530	530
Total Organic Carbon			mg/L	3.4	7.1	9	8.1	6.9	12.2	2.2	3.5	2.8	7.1	4.1	4.6
Total Suspended Solids			ma/L	32.9	62.2	11.6	20.8	20.6	64.8	11.4	21.9	15.2	89.4	42.9	44.4

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample		N. S. S. S.	1000	H85464	H85465	H85466	H85467	H85468	H85469	H85470	H85471	H85473	H85474	H85475	H85476
Well	D: Generic	The second second	1988	MW-14AR	DUP [MW-14AR]	MW-15AR	MW-3AR	MW-7	MW-1AR	MW-2R	MW-11RR	MW-16A	MW-16B	MW-12AR	MW-12B
	GSI	Specific	11-14-	02/14/08	02/14/08	02/15/08	02/15/08	05/12/08	05/13/08	05/13/08	05/13/08	05/14/08	05/14/08	05/14/08	05/14/08
OCs Date Collecte	a: Values	MOREL	Units	02/14/00	02/14/00	02/10/00	02/10/00	00/12/00	00/10/00	00/10/00	00/10/00	00/14/00	00/14/00	00/14/00	00/1-4/00
	1 4 700		Lug/L	ND [5]	ND [5]	ND [5]	ND [5]	I NA	NA NA	NA NA	l NA	T NA T	NA	NA	NA
Acetone	1,700		µg/L	MD [9]	IND [5]	IAD [2]	IND [0]	INA	INA	INA	14/3	140	14/4	14/3	14/3
SVOCs						-						LUD to Et	NE MAI	ND HAY	ND to T
I-Methylphenol ⁵	71		µg/L	ND [9.4]	ND [9.4]	ND [9.5]	ND [9.5]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.5]	ND [11]	ND [10]	ND [9.7]
Naphthalene	13		µg/L	ND [9.4]	ND [9.4]	ND [9.5]	ND [9.5]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.5]	ND [11]	ND [10]	ND [9.7]
Phenol	210		µg/L	ND [9.4]	ND [9.4]	ND [9.5]	ND [9.5]	NA	NA	NA	NA	NA	NA	NA	NA
CBs													West State		
Aroclor 1016			µg/L	ND [0.05]	ND [0.052]	ND [0.047]	ND [0.048]	ND [0.062]	ND [0.069]	ND [0.049]	ND [0.05]	ND [0.056] UJ	ND [0.053]	ND [0.053]	ND [0.047
Aroclor 1221			µg/L	ND [0.05]	ND [0.052]	ND [0.047]	ND [0.048]	ND [0.062]	ND [0.069]	ND [0.049]	ND [0.05]	ND [0.056] UJ	ND [0.053]	ND [0.053]	ND [0.047
Aroclor 1232			µg/L	ND [0.05]	ND [0.052]	ND [0.047]	ND [0.048]	ND [0.062]	ND [0.069]	ND [0.049]	ND [0.05]	ND [0.056] UJ	ND [0.053]	ND [0.053]	ND [0.047
Aroclor 1242			µg/L	ND [0.05]	ND [0.052]	ND [0.047]	ND [0.048]	ND [0.062]	ND [0.069]	ND [0.049]	ND [0.05]	ND [0.056] UJ	ND [0.053]	ND [0.053]	ND [0.047
Aroclor 1248			µg/L	ND [0.05]	ND [0.052]	ND [0.047]	ND [0.048]	ND [0.062]	ND [0.069]	ND [0.049]	ND [0.05]	ND [0.056] UJ	ND [0.053]	ND [0.053]	ND [0.047
Aroclor 1254			µg/L	ND [0.05]	ND [0.052]	ND [0.047]	ND [0.048]	ND [0.062]	ND [0.069]	ND [0.049]	ND [0.05]	ND [0.056] UJ	ND [0.053]	ND [0.053]	ND [0.04]
kroclor 1260			µg/L	ND [0.05]	ND [0.052]	ND [0.047]	ND [0.048]	ND [0.062]	ND [0.069]	ND [0.049]	ND [0.05]	ND [0.056] UJ	ND [0.053]	ND [0.053]	ND [0.04
Total PCBs	0.2		µg/L	ND [0.05]	ND [0.052]	ND [0.047]	ND [0.048]	ND [0.062]	ND [0.069]	ND [0.049]	ND [0.05]	ND [0.056] UJ	ND [0.053]	ND [0.053]	ND [0.047
Vietals															
Barium		2,300	µg/L	233	228	254	432	65 B	286	216	405	450	532	598	271
Calcium			µg/L	153,000	150,000	155,000	176,000	166,000	193,000	186,000	166,000	198,000	178,000	225,000	150,000
Chromium ⁶	11		µg/L	ND [10]	ND [10]	ND [10]	ND [10]	NA	NA	NA	NA	NA	NA	NA	NA
Iron			µg/L	9,770	9,600	9,950	55,700	39,100	64,600	17.200	4.270	11.600	9,180	56.300	5.360
Sodium			µg/L	119,000	117,000	140,000	14,400	60,200	5,130	82,600	86,800	76,200	92.000	56,600	101.000
Thallium		160	µg/L	ND [0.67]	ND [0.67]	ND [0.67]	ND [0.67]	ND [0.6]	ND [0.6]	ND [0.6]	ND [0.6]	ND [0.6]	ND [0.6]	ND [0.6]	ND [0.6]
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
/anadium	12		µg/L	1.5 B	0.78 B	2.6 B	1.3 B	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous															
Bicarbonate Alkalinity			mg/L	NA	I NA I	NA	NA	NA NA	NA	NA	NA	I NA I	NA	NA NA	NA
Carbonate Alkalinity			mg/L	NA	NA NA	NA	NA	NA	NA	NA	NA	NA I	NA	NA	NA
Chemical Oxygen Demand			mg/L	ND [20]	ND [20]	ND [20]	ND [20]	22	46.6	ND [20]	ND [20]	36.4	28.2	36.4	ND [20]
lydroxide Alkalinity			mg/L	NA	NA I	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA
litrate/Nitrite Nitrogen			mg/L	ND [100]	ND [100]	110	ND [100]	NA	NA	NA	NA	NA I	NA	NA	NA
Sulfate			mg/L	57	58	52	3.1	NA	NA	NA	NA	NA I	NA	NA NA	NA
otal Alkalinity			mg/L	420	430	430	510	NA	NA	NA	NA	NA I	NA	NA	NA
Total Organic Carbon			mg/L	8.4 J	4.8 J	5.2	6.1	3.4	9.7	7.7	6.3	9.3	10.1	11.1 J	2.1
Total Suspended Solids			ma/L	19.6	18.8	20.9	72.2	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample II):	1000	1999	H85477	H85478	H85479	H85480	H85481	H85482	H85483	H85484	H85485	H85486	H85487	H85488
Well ID	Generic	Site	1500	MW-13AR	MW-13B	MW-8AR	DUP [MW-8AR]	MW-8BR	MW-14AR	DUP [MW-14AR]	MW-15AR	MW-3AR	MW-7	MW-2R	MW-1AR
	GSI	Specific			AND DESCRIPTION OF THE PARTY OF	05/15/08	05/15/08	05/15/08	05/15/08	05/15/08	05/16/08	05/16/08	08/05/08	08/05/08	08/05/08
Date Collected	t: Values	WQBEL	Units	05/16/08	05/15/08	05/15/08	05/15/08	05/15/08	05/15/05	00/10/00	05/16/06	00/10/00	00/00/00	00/00/00	00/00/00
VOCs										- NA -	514	NIA.	NIA	NIA	I NA
Acetone	1,700		µg/L	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA
SVOCs															
4-Methylphenol ⁵	71		µg/L	ND [11]	ND [10]	ND [11]	ND [11]	ND [9.8]	ND [9.9]	ND [10]	ND [9.8]	ND [10]	ND [9.5]	ND [9.5]	ND [9.5]
Naphthalene	13		µg/L	ND [11]	ND [10]	ND [11]	ND [11]	ND [9.8]	ND [9.9]	ND [10]	ND [9.8]	ND [10]	ND [9.5]	ND [9.5]	ND [9.5]
Phenol	210		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs		are lives													
Aroclor 1016			µg/L	ND [0.053]	ND [0.049]	ND [0.049]	ND [0.054]	ND [0.049]	ND [0.049]	ND [0.053]	ND [0.054]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.049] UJ
Aroclor 1221			µg/L	ND [0.053]	ND [0.049]	ND [0.049]	ND [0.054]	ND [0.049]	ND [0.049]	ND [0.053]	ND [0.054]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.049] UJ
Aroclor 1232			µg/L	ND [0.053]	ND [0.049]	ND [0.049]	ND [0.054]	ND [0.049]	ND [0.049]	ND [0.053]	ND [0.054]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.049] UJ
Aroclor 1242	**		µg/L	0.036 J	ND [0.049]	ND [0.049]	ND [0.054]	ND [0.049]	ND [0.049]	ND [0.053]	ND [0.054]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.049] UJ
Aroclor 1248			µg/L	ND [0.053]	ND [0.049]	ND [0.049]	ND [0.054]	ND [0.049]	ND [0.049]	ND [0.053]	ND [0.054]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.049] UJ
Aroclor 1254			µg/L	ND [0.053]	ND [0.049]	ND [0.049]	ND [0.054]	ND [0.049]	ND [0.049]	ND [0.053]	ND [0.054]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.049] UJ
Aroclor 1260			µg/L	ND [0.053]	ND [0.049]	ND [0.049]	ND [0.054]	ND [0.049]	ND [0.049]	ND [0.053]	ND [0.054]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.049] UJ
Total PCBs	0.2		µg/L	0.036 J	ND [0.049]	ND [0.049]	ND [0.054]	ND [0.049]	ND [0.049]	ND [0.053]	ND [0.054]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.049] UJ
Metals				I PARTITION	A DESCRIPTION OF THE PERSON OF					THE RESERVE OF STREET		At an All and the last of the		THE RESERVE THE	
Barium		2,300	µg/L	845	196 B	436	438	268	255	260	311	215	67.7 B	178 B	387
Calcium			µg/L	316,000	149,000	211,000	212,000	175,000	176,000	176,000	185,000	172,000	166,000	156,000	226,000
Chromium ⁶	11		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron			µg/L	93,900	7,200	33,900	34,100	13,500	11,000	11,000	14,600	28,400	55,700	11,600	82.600
Sodium	-		µg/L	9,560	107,000	58,900	59,200	108,000	131,000	131,000	175,000	113,000	50,500	80,400	23,500
Thallium		160	µg/L	ND [0.6]	ND [0.6]	ND [0.6]	ND [0.6]	ND [0.6]	ND [0.6]	ND [0.6]	ND [0.6]	ND [0.6]	ND [25]	ND [0.92]	ND [25]
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	12		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous					The second				distribution of the					THE RESIDENCE	
Bicarbonate Alkalinity	-		mg/L	NA	NA	NA	I NA I	NA	I NA	I NA I	NA	I NA	I NA	NA NA	I NA
Carbonate Alkalinity			mg/L	NA	NA	NA	NA I	NA	NA	NA I	NA	NA NA	NA	NA	NA NA
Chemical Oxygen Demand			mg/L	30.2	ND [20]	26.1	22	ND [20]	ND [20]	22	ND [20]	ND [20]	26.1	ND [20]	34.3
Hydroxide Alkalinity		-	mg/L	NA	NA	NA	NA I	NA	NA	NA I	NA	NA	NA NA	NA	NA NA
Nitrate/Nitrite Nitrogen			mg/L	NA	NA	NA	NA NA	NA	NA	NA I	NA	NA	NA	NA	NA NA
Sulfate			mg/L	NA	NA	NA	NA NA	NA	NA NA	NA I	NA	NA	NA	NA	NA NA
Property and the second		-	mg/L	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Total Alkalinity															
Total Alkalinity Total Organic Carbon			mg/L	7.4	3	6.7	8.3	7	5.1	5.5 J	4.9	4.2	4.2	4.6	6.9

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample ID		100000	(3000)	H85489	H85490	H85492	H85493	H85494	H85495	H85496	H85497	H85498	H85499	H85500	H85501
Well ID	Generic	Site		MW-11RR	MW-16A	MW-16B	MW-12B	MW-12AR	MW-13B	MW-13AR	MW-8BR	MW-8AR	DUP [MW-8AR]	MW-15AR	MW-14AF
Date Collected	GSI	Specific WQBEL	Unite	08/06/08	08/06/08	08/06/08	08/06/08	08/07/08	08/07/08	08/07/08	08/07/08	08/07/08	08/07/08	08/08/08	08/08/08
OCs Date Collected	ii values	WUBEL	Units	00/00/00	00/00/00	00/00/00	00/00/00	00/07/00	00/01/00	00107100	00/07/100				
Acetone	1,700		µg/L	NA	l NA	I NA	I NA	T NA	NA NA	I NA	NA	I NA	I NA	NA	I NA
SVOCs	1,700		pg/L]	INA	INA	INA	14/4	1973	14/3	14/3	14/1	1473	1111	1413	1 11/1
white the same of			I I	110.10.41	L ND MAN	I ND 10 51	ND [9.9]	ND [9.9]	ND [9.4]	ND [10]	ND [9.6]	ND [10]	ND [10]	ND [9.9]	ND [9.6]
4-Methylphenol ⁵	71		µg/L	ND [9.4]	ND [10]	ND [9.5]				ND [10]		ND [10]	ND [10]	ND [9.9]	ND [9.6]
Vaphthalene	13		µg/L	ND [9.4]	ND [10]	ND [9.5]	ND [9.9]	ND [9.9]	ND [9.4]	ND [10]	ND [9.6] NA	NA NA	ND [10]	NA NA	NA NA
Phenol	210		µg/L	NA	NA	NA	NA	NA	NA NA	NA NA	NA	I NA	NA I	NA	I NA
PCBs				The Roles											
Aroclor 1016		***	µg/L	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.049]	ND [0.047] UJ	ND [0.047]	ND [0.049]	ND [0.047
Aroclor 1221			µg/L	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.049]	ND [0.047] UJ	ND [0.047]	ND [0.049]	ND [0.047
Aroclor 1232			µg/L	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.049]	ND [0.047] UJ	ND [0.047]	ND [0.049]	ND [0.047
Aroclor 1242			µg/L	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.049]	ND [0.047] UJ	ND [0.047]	ND [0.049]	ND [0.047
Aroclor 1248			µg/L	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.049]	ND [0.047] UJ	ND [0.047]	ND [0.049]	ND [0.047
Aroclor 1254			µg/L	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.049]	ND [0.047] UJ	ND [0.047]	ND [0.049]	ND [0.047
Aroclor 1260			µg/L	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.049]	ND [0.047] UJ	ND [0.047]	ND [0.049]	ND [0.047
Total PCBs	0.2		µg/L	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.049]	ND [0.047] UJ	ND [0.047]	ND [0.049]	ND [0.047
Metals					TO SHE WAS A STATE OF			BE LEE		AS EXPENSES			Electrical Control		
Barium		2,300	µg/L	448	420	505	262	598	193 B	744	273	444	467	257	233
Calcium			µg/L	162,000	174,000	166,000	141,000	217,000	142,000	291,000	172,000	202,000	215,000	156,000	150,000
Chromium ⁶	11		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ron			µg/L	5,930	10,700	8,240	5,030	53,100	6,910	65,000	14,000	29,100	30,800	9,550	8.980
Sodium			µg/L	89,100	77,100	88,400	95,100	58,600	99,900	23,000	80,300	59,400	63,200	156,000	120,000
Thallium		160	µg/L	ND [0.92]	ND [0.92]	ND [0.92]	1.1 B	3.3 B	ND [0.92]	ND [0.92]	ND [0.92]	ND [0.92]	ND [0.92]	ND [0.92]	ND [0.92]
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	12		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous			7 S A			principal de la company			The state of the s	7 (Free 1-2) (Free 1-2)				11-11-11-11	
Bicarbonate Alkalinity			mg/L	NA	NA	NA	NA	NA NA	NA	NA NA	NA	I NA	I NA I	NA	l NA
Carbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA
Chemical Oxygen Demand			mg/L	ND [20]	24.1	ND [20]	ND [20]	38.4 J	ND [20]	32.3	ND [20]	40.5	38.4	ND [20]	ND [20]
Hydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA
Nitrate/Nitrite Nitrogen			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA NA	NA	NA
Sulfate			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA
F . 4 - 1 A 16 - 17 - 14			mg/L	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA NA
otal Alkalinity						7.8	2.7	12.7		8.7	9.5	14.5	13.7		5.2
Total Alkalinity Total Organic Carbon			ma/L	7.8	8.5	1.8	21	12/	4.1	N /				5.3	

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample ID	Contract Con		No.	H85502	H85503	H85504	H85505	H85506	H85507	H85508	H85510	H85511	H85512	H85513	H85514
Well ID	Generic	Site		DUP IMW-14ARI	MW-3AR	MW-7	MW-2R	MW-1AR	MW-16A	MW-11RR	MW-16B	MW-12B	MW-12AR	MW-13B	MW-8BR
Date Collected	GSI	Specific	Halte	08/08/08	08/08/08	11/03/08	11/03/08	11/04/08	11/04/08	11/04/08	11/05/08	11/05/08	11/05/08	11/05/08	11/06/08
OCs	. Values	IVVQDEL	Ullita	00/00/00	00/00/00	11700700	11/00/00	11/04/00	11104100	1110-1100	11100100	11100100	11100100	11100100	11100100
cetone	1.700		µg/L	NA I	NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA	NA
SVOCs	1,700		I pg/L	IVA	14/7	14/3	14/4	14/1	11/4	14/1	14/4	147	1471	14/1	11/1
	74		1.00/1	ND MOI	ND [10]	ND [9.5]	ND [10]	ND [9.5] UJ	ND [9.7] UJ	ND [9.5] UJ	ND [9.5]	ND [9.4]	ND [9.5]	ND [9.7]	ND [9.5]
I-Methylphenol ⁵	71		µg/L µg/L	ND [10] ND [10]	ND [10]	ND [9.5]	ND [10]	ND [9.5] UJ	ND [9.7] UJ	ND [9.5] UJ	ND [9.5]	ND [9.4]	ND [9.5]	ND [9.7]	ND [9.5]
Naphthalene Phenol	13		µg/L µg/L	ND [10]	ND [10]	ND [9.5]	NA NA	NA NA	NA NA	NA [9.5] 03	NA NA	NA NA	NA NA	NA NA	NA NA
	210		µg/L	INA	IVA	INA	IVA	INM	IVA	INA	INA	INA	INA	INA	IVA
CBs	_	-	I	ND to o to live I	ND 10 0 10	ND to o to:	ND 10 0473	ND 10 0471	ND 10 047	ND (0.046)	ND 10 0473	ND 10 0403	ND 10 047	ND 10 0463	ND IO OI
Aroclor 1016				ND [0.048] UJ	ND [0.049]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047
Aroclor 1221				ND [0.048] UJ	ND [0.049]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.04]
Aroclor 1232			µg/L		ND [0.049]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047
Aroclor 1242			µg/L	ND [0.048] UJ	ND [0.049]	ND [0.048]	ND [0.047]	ND [0.047]	0.027 J	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047
Aroclor 1248			µg/L	ND [0.048] UJ	ND [0.049]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047
Aroclor 1254			µg/L	ND [0.048] UJ	ND [0.049]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.04"
Aroclor 1260			µg/L	ND [0.048] UJ	ND [0.049]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.04]
Total PCBs	0.2		µg/L	ND [0.048] UJ	ND [0.049]	ND [0.048]	ND [0.047]	ND [0.047]	0.027 J	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.047
Metals															
Barium		2,300	µg/L	236	250	66.6 B	183 B	267	441	449	491	257	621	192 B	236
Calcium			µg/L	149,000	168,000	153,000	141,000	166,000	179,000	158,000	162,000	142,000	228,000	143,000	157,000
Chromium ⁶	11		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ron			µg/L	8,970	16,000	24,600	15,100	53,200	11,700	4,380	8,190	5,160	65,300	7,240	12,400
Sodium			µg/L	120,000	165,000	54,300	51,000	13,000	80,200	92,700	88,700	99,100	51,900	98,200	90,700
Thallium		160	µg/L	ND [0.92]	ND [0.92]	ND [25] UB	ND [0.77]	ND [25] UB	ND [25] UB	ND [0.77]	ND [25] UB	ND [25] UB	ND [25] UB	ND [0.77]	ND [25] U
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	12		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	12				A CONTRACTOR OF THE PARTY OF TH										
Miscellaneous	12									THE RESERVE OF THE PERSON NAMED IN				NA	NA NA
Later and American Control of the Co		-	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Miscellaneous Bicarbonate Alkalinity			mg/L	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA			
Miscellaneous Bicarbonate Alkalinity Carbonate Alkalinity										NA	NA	NA	NA	NA	NA
Miscellaneous Bicarbonate Alkalinity Carbonate Alkalinity Chemical Oxygen Demand			mg/L	NA	NA	NA ND [20]	NA	NA 22	NA	NA ND [20]	NA 28.2	NA ND [20]	NA 28.2 J	NA ND [20]	NA ND [20]
Miscellaneous Bicarbonate Alkalinity Carbonate Alkalinity Chemical Oxygen Demand Hydroxide Alkalinity			mg/L mg/L	NA ND [20]	NA ND [20]	NA	NA 28.2	NA 22 NA	NA 48.6 NA	NA ND [20] NA	NA 28.2 NA	NA ND [20] NA	NA 28.2 J NA	NA ND [20] NA	NA ND [20] NA
Miscellaneous Bicarbonate Alkalinity Carbonate Alkalinity Chemical Oxygen Demand Hydroxide Alkalinity Vitrate/Nitrite Nitrogen			mg/L mg/L mg/L	NA ND [20] NA	NA ND [20] NA NA	NA ND [20] NA NA	NA 28.2 NA NA	NA 22 NA NA	NA 48.6 NA NA	NA ND [20] NA NA	NA 28.2 NA NA	NA ND [20] NA NA	NA 28.2 J NA NA	NA ND [20] NA NA	NA ND [20 NA NA
Miscellaneous Bicarbonate Alkalinity Carbonate Alkalinity Chemical Oxygen Demand Hydroxide Alkalinity Vitrate/Nitrite Nitrogen Sulfate			mg/L mg/L mg/L	NA ND [20] NA NA	NA ND [20] NA	NA ND [20] NA	NA 28.2 NA	NA 22 NA	NA 48.6 NA	NA ND [20] NA NA NA	NA 28.2 NA NA	NA ND [20] NA NA NA	NA 28.2 J NA NA NA	NA ND [20] NA NA NA	NA ND [20] NA NA NA
Miscellaneous			mg/L mg/L mg/L mg/L	NA ND [20] NA NA	NA ND [20] NA NA NA	NA ND [20] NA NA NA	NA 28.2 NA NA NA	NA 22 NA NA NA	NA 48.6 NA NA	NA ND [20] NA NA	NA 28.2 NA NA	NA ND [20] NA NA	NA 28.2 J NA NA	NA ND [20] NA NA	NA ND [20] NA NA

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sam	ple ID:		STORE .	1250	H85515	H85516	H85517	H85518	H85519	H85520	H85521	H85522	H85523	H85524	H85525	H85526
V	/ell ID: G		Site	1886	MW-13AR	MW-14AR	DUP [MW-14AR]	MW-8AR	DUP IMW-8ARI	MW-15AR	MW-3AR	MW-7	MW-1AR	MW-2R	MW-11RR	MW-16A
	900 DE 10	Control of the last of the las	pecific		11/06/08	11/06/08	11/06/08	11/06/08	11/06/08	11/07/08	11/07/08	02/02/09	02/03/09	02/03/09	02/03/09	02/03/09
Date Coll	ected: V	alues V	VQBEL	Units	11/06/08	11/06/08	11/06/08	11/06/06	11/06/06	11/0//00	11/0//00	02/02/03	02/03/08	02/03/08	02/03/03	02/05/05
OCs		1,700		μg/L [NA	l NA	T NA T	NA	T NA T	NA	l NA	ND [5] UJ	ND [2.5] UB,J	ND [5] UJ	ND [2.3] UB,J	ND [5] UJ
Acetone		1,700		µg/L	INA	INA	INA	INA	INA	ING	INA	140 [0] 00	140 [2.0] 00,0	HD [0] 00	1 140 [2.0] 00,0	145 [0] 00
SVOCs									T	LID IO III	110 10 01	LID MAN	I ND MAN	ND MOI	T ND to 51	ND [9.7]
4-Methylphenol ⁵		71		µg/L	ND [9.5]	ND [9.4]	ND [9.6]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.6]	ND [10]	ND [10]	ND [10]	ND [9.5]	
Vaphthalene		13		µg/L	ND [9.5]	ND [9.4]	ND [9.6]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.6]	ND [10]	ND [10]	ND [10]	ND [9.5]	ND [9.7]
Phenol		210		µg/L	NA	NA	NA NA	NA	NA	NA	NA	ND [10]	ND [10]	ND [10]	ND [9.5]	ND [9.7]
PCBs														25/1/2022		
Aroclor 1016				µg/L	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.049
Aroclor 1221	ATTEN A			µg/L	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.049
Aroclor 1232				µg/L	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.049]
Aroclor 1242				µg/L	0.073	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.049]
Aroclor 1248				µg/L	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.049
Aroclor 1254			**	µg/L	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.049
Aroclor 1260				µg/L	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.049
Total PCBs		0.2		µg/L	0.073	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.049
Metals	ALC: N				Marine Marine							A PLANTING				T. E. Stewart
Barium			2,300	µg/L	735	247	247	465	466	212	176 B	62 B	266	174 B	437	414
Calcium				µg/L	256,000	165,000	166,000	216,000	214,000	138,000	116,000	165,000	184,000	163,000	155,000	173,000
Chromium ⁶		11		µа/L	NA	NA	NA	NA	NA	NA	NA	ND [0.14]	ND [0.14]	ND [0.14]	0.38 B	0.46 B
Iron	-			µg/L	52,800	10,700	10,800	36,600	36,600	8,700	10,100	4,470	56.200	9.930	3,930	10,700
Sodium				µg/L	42,300	131,000	133,000	44,500	44,500	141,000	120,000	50,600	16,600	110,000	90.700	80,300
Thallium	-		160	µg/L	ND [25] UB	ND [25] UB	ND [0.77]	ND [0.77]	ND [25] UB	ND [25] UB	ND [25] UB	ND [25] UB	ND [25] UB	ND [25] UB	ND [25] UB	ND [25] UI
Zinc			1,200	µg/L	NA	NA	NA I	NA	NA I	NA	NA	NA	NA	NA	NA	NA
/anadium		12		µg/L	NA	NA	NA	NA	NA NA	NA	NA	ND [0.5]	ND [0.5]	ND [50] UB	ND [50] UB	ND [50] U
Miscellaneous				1 1-11		- A - A - A - A - A - A - A - A - A - A		Profession in the								
Bicarbonate Alkalinity				mg/L	NA	NA	I NA I	NA	I NA I	NA	NA NA	370	530	460	450	500
Carbonate Alkalinity				mg/L	NA	NA	NA	NA	NA I	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
Chemical Oxygen Demar	nd			mg/L	40.5	ND [20]	ND [20]	42.5	42.5	ND [20]	ND [20]	31.5	27.2	75	ND [20]	20.6
Hydroxide Alkalinity				mg/L	NA -	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA
Nitrate/Nitrite Nitrogen				mg/L	NA	NA	NA I	NA	NA NA	NA	NA	0.033 J	ND [0.1]	ND [0.1]	ND [0.1]	ND [0.1]
Sulfate				mg/L	NA	NA	NA I	NA	NA I	NA	NA	180	0.38	56	45	36
Total Alkalinity				ma/L	NA	NA	NA I	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total Organic Carbon				mg/L	10.1	4	4.4	13	12.9	4.5	5.5	4.5	7.8	4.5	5.7	9.1
				ma/L	NA	NA	NA NA	NA	NA NA	NA NA	NA	15.4	7.0	19.4	0.7	25.3

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample	Committee of the Commit	10000	10000	H85628	H85529	H85530	H85531	H85532	H85533	H85534	H85535	H85536	H85537	H85538	H85539
Wel	ID: Generic	Site Specific		MW-16B	MW-12B	MW-13B	MW-12AR	MW-13AR	MW-8BR	DUP [MW-8BR]	MW-8AR	MW-14AR	MW-15AR	DUP [MW-15AR]	MW-3AR
Date Collec	ted: Values	Brot. schoolschoolschool	Units	02/04/09	02/04/09	02/04/09	02/04/09	02/05/09	02/05/09	02/05/09	02/05/09	02/05/09	02/06/09	02/06/09	02/06/09
OCs Date Conce	cu.j values	MODEL	Tomto	02/04/00	0210110										
cetone	1,700		µg/L	ND [5] UJ	ND [5] UJ	ND [5] UJ	ND [5] UJ	ND [5] UJ	ND [5] UJ	ND [5] UJ	ND [5] UJ				
VOCs								L DEPENDE							
-Methylphenol ⁵	71		ua/L	ND [10]	ND [10]	ND [10]	ND [9.8]	ND [10]	ND [9.9]	ND [9.7]	ND [9.8]	ND [9.8]	ND [9.5]	ND [9.4]	ND [10]
aphthalene	13		µg/L	ND [10]	ND [10]	ND [10]	ND [9.8]	ND [10]	ND [9.9]	ND [9.7]	ND [9.8]	ND [9.8]	ND [9.5]	ND [9.4]	ND [10]
henol	210		µg/L	ND [10]	ND [10]	ND [10]	ND [9.8]	ND [10]	ND [9.9]	ND [9.7]	ND [9.8]	ND [9.8]	ND [9.5]	ND [9.4]	ND [10]
CBs								ALCOHOLD BY							
roclor 1016			µg/L	ND [0.047]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.051]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]
roclor 1221			µg/L	ND [0.047]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.051]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	0.041 J	ND [0.049]
Aroclor 1232			µg/L	ND [0.047]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.051]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]
Aroclor 1242			µg/L	ND [0.047]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.051]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]
roclor 1248			µg/L	ND [0.047]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.051]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049
roclor 1254			µg/L	ND [0.047]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.051]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049
roclor 1260			µg/L	ND [0.047]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.051]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049
Total PCBs	0.2		µg/L	ND [0.047]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.051]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	0.041 J	ND [0.049
Metals	S. Landie										Hardan Neill				
Barium		2,300	µg/L	473	243	187 B	583	729	245	235	427	264	256	258	261
Calcium			µg/L	155,000	128,000	139,000	208,000	246,000	157,000	152,000	195,000	174,000	165,000	163,000	164,000
Chromium ⁶	11		µg/L	0.32 B	ND [0.14]	ND [0.14]	0.82 B	0.53 B	ND [0.14]	0.25 B	ND [0.14]	ND [0.14]	0.31 B	ND [0.14]	ND [0.14]
ron			µg/L	7,140	4,590	6,500	63,000	56,800	11,800	11,400	31,000	10,400	9,640	9,560	20,800
Sodium			µg/L	86,900	90,800	96,600	58,600	38,400	99,800	96,800	71,400	152,000	168,000	171,000	118,000
Thallium		160	µg/L	ND [25] UB	ND [25] UB	ND [25] UB	ND [25] UB	2.6 B	2.3 B	2.1 B	3.6 B	1.2 B	3 B	2.5 B	3.2 B
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
/anadium	12		µg/L	ND [50] UB	ND [0.5]	ND [50] UB	ND [50] UB	ND [0.5]	ND [0.5]	ND [50] UB	ND [50] UB	ND [0.5]	ND [50] UB	ND [50] UB	ND [50] UI
Miscellaneous														THE REAL PROPERTY.	
Bicarbonate Alkalinity			mg/L	470	350	390	680	680	450	450	640	450	410	410	470
Carbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chemical Oxygen Demand	-		mg/L	29.3	ND [20]	20.6	72.8 J	53.3	20.6	25	53.3	42.4	29.3	ND [20]	48.9
lydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate/Nitrite Nitrogen			mg/L	ND [0.1]	0.1 J	ND [0.1]	ND [0.1]	ND [0.1]	0.033 J	0.033 J	ND [0.1]				
Sulfate			mg/L	34	71	58	0.8	0.14 J	37	38	2.9	59	84	80	42
Total Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon			mg/L	8.6	2.7	3.4	17.3	9.4	4	3.8	14.2	4.1	4.4	4.3	5.3
Total Suspended Solids			mg/L	18.9	11.2	13.8	84.8	71.7	24.9	23.6	50.2	23.2	19.4	21.2	36.1

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample I	D:	9,865	920	H85540	H85541	H85542	H85543	H85544	H85546	H85547	H85548	H85551	H85552	H85553	H85554
Well I	D: Generic			MW-7	MW-1AR	MW-2R	MW-11RR	MW-16A	DUP [MW-16A]	MW-16B	MW-12B	MW-13B	MW-12AR	MW-13AR	DUP [MW-13A
Date Collecte	d: Values	Specific WQBEL	Units	05/18/09	05/19/09	05/19/09	05/19/09	05/19/09	05/19/09	05/20/09	05/20/09	05/20/09	05/20/09	05/21/09	05/21/09
/OCs	u. Values	IVVQDEL	TOTHEST	00/10/08	00/10/00	00/10/00	1 00/10/00	00/10/00	00/10/00	00/20/00	00/20/00	55125155	COMMONDO		-
Acetone	1,700	T	Lug/L	NA	I NA	NA NA	I NA	NA	T NA T	NA	I NA	I NA	NA	NA NA	I NA
SVOCs	1,700		Pg/L	14/4	13/3	10/1	13/3	1471	101						
	71		lua/L	ND [9.8]	ND [9.9]	ND [9.7]	ND [9.9]	ND [9.8]	ND [9.9]	ND [9.8]	ND [9.8]	ND [9,7]	ND [9.7]	ND [9.8]	ND [9.7]
4-Methylphenol ⁵			ug/L	ND [9.8]	ND [9.9]	ND [9.7]	ND [9.9]	ND [9.8]	ND [9.9]	ND [9.8]	ND [9.8]	ND [9.7]	ND [9.7]	ND [9.8]	ND [9.7]
Naphthalene Phenol	13		µg/L µg/L	NA NA	ND [9.9]	ND [9.7]	ND [9.9]	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PCBs	210		I µg/L	IVA	INA	INA	INA	INA	I IVA	INA	14/2	INA	1975	1973	INA
			I n I	ND 10 0 101	T ND 10 0 103	ND [0.049]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.049]	ND [0.049]
Aroclor 1016			µg/L	ND [0.049]	ND [0.049]		ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.049]	ND [0.049]
Aroclor 1221			µg/L	ND [0.049]	ND [0.049]	ND [0.049]					ND [0.048]	ND [0.048]	ND [0.049]	ND [0.049]	ND [0.049]
Aroclor 1232			µg/L	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]				0.05	0.039 J
Aroclor 1242			µg/L	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]		
Aroclor 1248			µg/L	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.049]	ND [0.049]
Aroclor 1254			µg/L	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.049]	ND [0.049]
Aroclor 1260			µg/L	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.049]	ND [0.049]
Total PCBs	0.2		µg/L	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	0.05	0.039 J
Metals															
Barium		2,300	µg/L	84.1 B	398	179 B	434	440	444	474	265	191 B	550	1,090	1,090
Calcium			µg/L	175,000	246,000	164,000	152,000	166,000	168,000	151,000	133,000	139,000	190,000	292,000	293,000
Chromium ⁶	11		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron			µg/L	5,700	86,800	10,800	4,120	14,600	14,500	7,320	4,330	6,540	62,700	86,800	86,800
Sodium			µg/L	63,300	19,800	119,000	85,900	76,200	78,200	80,400	88,900	89,900	51,400	11,800	11,800
Thallium		160	µg/L	ND [25] UB	ND [25] UB	ND [25] UB	ND [25] UB	ND [0.69]	ND [0.69]	ND [25] UB	ND [25] UB	ND [25] UB	ND [25] UB	ND [25] UB	ND [25] UB
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	12		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous			Aug Charles									(richard and a later of a later o			The Plant
Bicarbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chemical Oxygen Demand			mg/L	22.8	31.5	29.3	25	33.7	35.9 J	ND [20]	ND [20]	ND [20]	38	35.9	38
Hydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate/Nitrite Nitrogen			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon			mg/L	4	8.6	4.6	5.5	8.7	8.1	7	2.1	2.5	12.7	7.1	7.7
Total Suspended Solids			mg/L	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample ID		0 1000	1000	H85555	H85556	H85557	H85558	H85559	H85560	H85561	H85562	H85563	H85564	H85566	H85567
Well ID	Generic		233	MW-14AR	MW-8BR	MW-8AR	MW-15AR	MW-3AR	MW-7	MW-1AR	MW-2R	MW-11RR	MW-16A	MW-16B	MW-12B
	GSI	Specific						05/22/09	08/17/09	08/18/09	08/18/09	08/18/09	08/19/09	08/18/09	08/18/09
Date Collected	: Values	WQBEL	Units	05/21/09	05/21/09	05/21/09	05/22/09	05/22/09	08/17/09	08/18/09	08/18/09	00/10/09	00/19/09	00/10/03	00/10/09
OCs	T 4 700		I wall I	NIA	l NA	NA	I NA	NA NA	NA NA	NA NA	NA NA	NA NA	T NA I	NA	NA
cetone	1,700		µg/L	NA	INA	NA	INA	INA	IVA	INA	INA	INA	INA	INA	INA
SVOCs											LUD to at	110 10 01	T UD to Et T	ND to El	AUD IO TI
I-Methylphenol ⁵	71		µg/L	ND [9.8]	ND [9.7]	ND [9.8]	ND [9.8]	ND [9.6]	ND [9.9]	ND [10]	ND [9.6]	ND [9.6]	ND [9.5]	ND [9.5]	ND [9.7]
Naphthalene	13		µg/L	ND [9.8]	ND [9.7]	ND [9.8]	ND [9.8]	ND [9.6]	ND [9.9]	ND [10]	ND [9.6]	ND [9.6]	ND [9.5]	ND [9.5]	ND [9.7]
Phenol	210	***	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs															
Aroclor 1016		**	μg/L	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048] UJ	ND [0.048]	ND [0.047]
Aroclor 1221		***	µg/L	ND [0.048]	ND [0.048]	ND [0.049]	0.024 J	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048] UJ	ND [0.048]	ND [0.047]
Aroclor 1232			µg/L	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048] UJ	ND [0.048]	ND [0.047]
Aroclor 1242			µg/L	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048] UJ	ND [0.048]	ND [0.047]
Aroclor 1248			µg/L	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048] UJ	ND [0.048]	ND [0.047]
Aroclor 1254			µg/L	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048] UJ	ND [0.048]	ND [0.047]
Aroclor 1260			µg/L	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048] UJ	ND [0.048]	ND [0.047
Total PCBs	0.2		µg/L	ND [0.048]	ND [0.048]	ND [0.049]	0.024 J	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048] UJ	ND [0.048]	ND [0.047]
Metals	100			the sales and							10 10 10 10 10 10				
Barium		2,300	µg/L	252	261	420	256	212	71.8 B	371	145 B	444	422	479	242
Calcium			µg/L	147,000	164,000	233,000	148,000	167,000	169,000	230,000	133,000	155,000	170,000	158,000	130,000
Chromium ⁶	11		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ron			µg/L	9,580	13,000	42,900	10,100	29,900	5,380	80,900	11,100	5.060	12,300	8,020	4,990
Sodium			µg/L	193,000	109,000	10,300	149,000	23,100	56,600	20,000	96,400	84,900	77,000	84.900	91,700
Thallium		160	µg/L	ND [0.69]	ND [25] UB	ND [0.69]	ND [25] UB	ND [25] UB	2.3 B	3.3 B	ND [1.1]	ND [1,1]	ND [1.1]	ND [1.1]	ND [1.5]
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	12		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous	Same -					Telephone State									
Bicarbonate Alkalinity			mg/L	NA	NA NA	NA	NA NA	NA NA	NA	l NA	NA NA	NA NA	I NA I	NA	l NA
			ma/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
Carbonate Alkalinity												1 11 1			
Carbonate Alkalinity			mg/L	33.7	ND [20]	ND [20]	ND [20]	ND [20]	ND [20]	33.7	ND 1201	ND 1201	206	ND [20]	
Carbonate Alkalinity Chemical Oxygen Demand					ND [20] NA	ND [20] NA	ND [20]	ND [20]	ND [20]	33.7 NA	ND [20]	ND [20]	20.6 NA	ND [20]	ND [20]
Carbonate Alkalinity Chemical Oxygen Demand Hydroxide Alkalinity			mg/L	33.7		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonate Alkalinity Chemical Oxygen Demand Hydroxide Alkalinity Nitrate/Nitrite Nitrogen			mg/L mg/L mg/L	33.7 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbonate Alkalinity Chemical Oxygen Demand Hydroxide Alkalinity Nitrate/Nitrite Nitrogen Sulfate			mg/L mg/L	33.7 NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
			mg/L mg/L mg/L mg/L	33.7 NA NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample I		A STATE OF THE PARTY OF THE PAR	1000	H85568	H85569	H85570	H85571	H85572	H85573	H85574	H85575	H85576	H85577	H85578	H85579
Well	Generic		1	MW-12AR	MW-13B	MW-13AR	DUP [MW-13AR]	MW-8BR	MW-8AR	MW-14AR	DUP [MW-14AR]	MW-15AR	MW-3AR	MW-11RR	MW-1AR
Date Collecte	GSI	Specific	Units	08/19/09	08/19/09	08/19/09	08/19/09	08/19/09	08/19/09	08/20/09	08/20/09	08/20/09	08/21/09	11/10/09	11/10/09
/OCs	d: values	IWUBEL	Units	00/19/09	00/13/03	00/10/00	00/13/03	00/10/00	00/10/00	00/20/00	00/20/00	00/20/00	00121100	11110100	11110100
	1,700		µg/L	NA	I NA	NA NA	T NA T	NA	l NA	I NA	T NA T	NA	NA	l NA	NA
Acetone	1,700		µy/L	IVA	INA	INA	I INA	INA	INA	1475	110/5	147	11/1	1475	101
SVOCs							1 100 10 11	110 10 51	110 10 51	LID to Et	T ND 10 TI	ND 10 E1	ND to 71	ND to ti	ND 10 01
4-Methylphenol ⁵	71		µg/L	ND [9.5]	ND [9.6]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.7]	ND [9.5]	ND [9.7]	ND [9.5]	ND [9.6]
Naphthalene	13		µg/L	ND [9.5]	ND [9.6]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.7]	ND [9.5]	ND [9.7]	ND [9.5]	ND [9.6]
Phenol	210		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs															
Aroclor 1016			µg/L	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.05]	ND [0.05]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1221			µg/L	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	0.048 J	ND [0.05]	ND [0.05]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1232			µg/L	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.05]	ND [0.05]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1242			µg/L	ND [0.047]	ND [0.047]	0.064	0.05	ND [0.048]	ND [0.048]	ND [0.05]	ND [0.05]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1248			µg/L	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.05]	ND [0.05]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1254			µg/L	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.05]	ND [0.05]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1260			µg/L	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.05]	ND [0.05]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Total PCBs	0.2		µg/L	ND [0.047]	ND [0.047]	0.064	0.05	ND [0.048]	0.048 J	ND [0.05]	ND [0.05]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Metals			160			Lande Miller									Jan Allen
Barium		2,300	µg/L	546	193 B	841	827	249	436	281	277	228	218	476	283
Calcium			µg/L	195,000	147,000	263,000	258,000	171,000	205,000	171,000	169,000	152,000	136,000	157,000	166,000
Chromium ⁶	11		µg/L	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Iron			µg/L	58,100	7,360	71,200	69,700	14,900	40,700	10,900	10.700	8.970	16,700	5,670	57,200
Sodium			µg/L	67,200	96,600	33,600	33,000	89,900	34,700	175,000	174,000	109,000	86,800	89,600	13,700
Thallium		160	µg/L	ND [1.1]	ND [1.1]	2.2 B	1.7 B	ND [1.1]	ND [1.1]	ND [1.1]	ND [1.1]	ND [1.1]	ND [1,1]	ND [25] UB	ND [0.5]
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Vanadium	12		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous															
Bicarbonate Alkalinity			mg/L	NA	NA	NA	NA I	NA	NA	NA	NA I	NA	NA	NA NA	NA
Carbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Chemical Oxygen Demand	-		mg/L	46.7	ND [20]	20.6	20.6	ND [20]	31.5	ND [20]	ND [20]	ND [20]	ND [20]	33.7	ND [20]
Hydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Nitrate/Nitrite Nitrogen			mg/L	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Sulfate			mg/L	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Total Alkalinity			mg/L	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA
Total Organic Carbon			mg/L	11.8 J	2.6	8.4	8.1	4.8	8.8	4.2	4.4	4.2	3.9	6.8	7.6
Total Suspended Solids			mg/L	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA

TABLE 1

POST-REMEDIATION GROUNDWATER SAMPLING ANALYTICAL RESULTS SUMMARY

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample ID		ATTENDED IN	500	H85580	H85582	H85583	H85584	H85585	H85586	H85587	H85588	H85589	H85590	H85591	H85592
Well ID	Generic	Site	3,233	MW-16A	MW-16B	MW-12B	MW-12AR	MW-13B	MW-13AR	DUP [MW-13AR]	MW-8BR	MW-8AR	MW-14AR	DUP [MW-14AR]	MW-15AR
Data Callantad	GSI	Specific	11-14-	11/10/09	11/10/09	11/10/09	11/11/09	11/11/09	11/11/09	11/11/09	11/11/09	11/12/09	11/12/09	11/12/09	11/12/09
/OCs	: Values	WQBEL	Units	11/10/09	11/10/09	11/10/09	11/11/09	11/11/09	11/11/09	11/11/09	11/11/00	11/12/00	11/12/00	TITLETOS	11/12/03
	1 1,700		Lug/L	NA	NA	NA	l NA	NA I	NA	T NA T	NA	NA	NA	T NA T	NA
Acetone	1,700		I µy/L [INA	INA	INA	INA	INA	INA	INA	INA	14/1	14/1	1971	INA
							110 10 01	110 10 51	110 10 51	I NE COLO	ND 10 F1	ND to Ti	ND 10 01	I ND to ot	NID IO TI
4-Methylphenol ⁵	71		µg/L	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.6]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.7]	ND [9.6]	ND [9.6]	ND [9.7]
Naphthalene	13		µg/L	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.6]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.7]	ND [9.6]	ND [9.6]	ND [9.7]
Phenol	210		µg/L	NA	NA	NA	NA	NA	NA ·	NA	NA	NA	NA	NA NA	NA
PCBs															
Aroclor 1016			µg/L	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1221			µg/L	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	0.053
Aroclor 1232			µg/L	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1242			µg/L	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]	0.079	0.055	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1248			µg/L	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1254			µg/L	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Aroclor 1260			µg/L	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]
Total PCBs	0.2		µg/L	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]	0.079	0.055	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	0.053
Metals			Direct					ANTHE LE				- HOLDING TO LAND	William Co.		
Barium		2,300	μg/L	431	516	248	536	203	850	842	241	407	268	258	284
Calcium			µg/L	162,000	158,000	132,000	189,000	142,000	265,000	263,000	153,000	215,000	164,000	158,000	172,000
Chromium ⁶	11		µg/L	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA
Iron			µg/L	12,200	8,450	5,150	52,900	7,670	72,800	72,200	13,900	32,900	11,100	10.800	10.800
Sodium			µg/L	81,800	89,600	96,200	67,900	93,700	19.200	18.800	93,000	23,000	364,000	360,000	326,000
Thallium		160	µg/L	ND [0.5]	ND [0.5]	0.6 B	ND [0.5]	ND [0.5]	ND [0.5]	ND [25] UB	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
Mallium														NA NA	NA
Zinc		1,200	µg/L	NA	NA	NA	NA	NA			NA	NA	l NA		
	12		µg/L µg/L	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Zinc		1,200							NA	NA				NA NA	NA
Zinc Vanadium		1,200	µg/L	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA		
Zinc Vanadium Miscellaneous Bicarbonate Alkalinity	12	1,200	mg/L	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	I NA I	NA
Zinc Vanadium Miscellaneous Bicarbonate Alkalinity Carbonate Alkalinity	12	1,200	µg/L	NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA	NA NA
Zinc Vanadium Miscellaneous Bicarbonate Alkalinity	12	1,200 	mg/L mg/L	NA NA NA	NA NA NA 44.6	NA NA NA ND [20]	NA NA NA 42.4	NA NA NA ND [20]	NA NA NA NA 42.4	NA NA NA NA NA 33.7	NA NA NA ND [20]	NA NA NA 25.5	NA NA NA 22	NA NA 22	NA NA 23.8
Zinc Vanadium Miscellaneous Bicarbonate Alkalinity Carbonate Alkalinity Chemical Oxygen Demand Hydroxide Alkalinity	12	1,200 	mg/L mg/L mg/L mg/L	NA NA NA 35.9	NA NA NA 44.6 NA	NA NA NA ND [20] NA	NA NA NA 42.4 NA	NA NA NA ND [20] NA	NA NA NA NA 42.4 NA	NA NA NA NA 33.7 NA	NA NA NA ND [20] NA	NA NA NA 25.5 NA	NA NA NA 22 NA	NA NA 22 NA	NA NA 23.8 NA
Zinc Vanadium Miscellaneous Bicarbonate Alkalinity Carbonate Alkalinity Chemical Oxygen Demand Hydroxide Alkalinity Nitrate/Nitrite Nitrogen	 12	1,200 	mg/L mg/L mg/L mg/L mg/L	NA NA NA 35.9 NA NA	NA NA NA 44.6 NA NA	NA NA NA ND [20] NA NA	NA NA NA 42.4 NA NA	NA NA NA ND [20] NA NA	NA NA NA NA 42.4 NA NA	NA NA NA NA NA NA NA	NA NA ND [20] NA NA	NA NA NA 25.5 NA NA	NA NA NA 22 NA NA	NA NA 22 NA NA	NA NA 23.8 NA NA
Zinc Vanadium Miscellaneous Bicarbonate Alkalinity Carbonate Alkalinity Chemical Oxygen Demand Hydroxide Alkalinity Nitrate/Nitrite Nitrogen Sulfate	12	1,200 	mg/L mg/L mg/L mg/L mg/L mg/L	NA NA NA 35.9 NA NA	NA NA NA 44.6 NA NA NA	NA NA ND [20] NA NA NA NA	NA NA 42.4 NA NA NA NA NA	NA NA ND [20] NA NA NA NA	NA NA NA NA 42.4 NA NA NA	NA NA NA NA 33.7 NA NA NA	NA NA ND [20] NA NA NA	NA NA NA 25.5 NA NA	NA NA NA 22 NA NA NA	NA NA 22 NA NA NA NA	NA NA 23.8 NA NA
Zinc Vanadium Miscellaneous Bicarbonate Alkalinity Carbonate Alkalinity Chemical Oxygen Demand Hydroxide Alkalinity Nitrate/Nitrite Nitrogen	12	1,200 	mg/L mg/L mg/L mg/L mg/L	NA NA NA 35.9 NA NA	NA NA NA 44.6 NA NA	NA NA NA ND [20] NA NA	NA NA NA 42.4 NA NA	NA NA NA ND [20] NA NA	NA NA NA NA 42.4 NA NA	NA NA NA NA NA NA NA	NA NA ND [20] NA NA	NA NA NA 25.5 NA NA	NA NA NA 22 NA NA	NA NA 22 NA NA	NA NA 23.8 NA NA

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample ID		ST. Se	733	H85593	H85594	H85595	H85596	H85597	H85598	H85599	H85600	H85602	H85603	H85604	H85605
Well ID	Generic	Site	1	MW-3AR	MW-2R	MW-7	MW-2R	MW-7	MW-11RR	DUP [MW-11RR]	MW-1AR	MW-16A	MW-16B	MW-12B	MW-12AR
	GSI	Specific	100000	11/12/09	11/13/09	11/09/09	02/15/10	02/15/10	02/16/10	02/16/10	02/16/10	02/16/10	02/16/10	02/17/10	02/17/10
Date Collected	Values	WQBEL	Units	11/12/09	11/13/09	11/09/09	02/10/10	02/10/10	02/10/10	02/10/10	02/10/10	02/10/10	02/10/10	02/1//10	92/1/10
/OCs	1 1,700		Lucill	NA	I NA	I NA I	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	1.3 J	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]
Acetone	1,700		µg/L	IVA	INA	NA I	ND [5.0]	140 [0.0]	ND [5.0]	1 10 [0.0]	1.00	140 [0.0]	140 [0.0]	140 [0.0]	140 [0.0]
SVOCs			T							T	11D 10 01	NID 10 71	ND HO	ND 10 71	AUD to 41
4-Methylphenol ⁵	71		µg/L	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.7]	ND [9.6]	ND [9.4]	ND [9.5]	ND [9.6]	ND [9.7]	ND [10]	ND [9.7]	ND [9.4]
Naphthalene	13		µg/L	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.7]	ND [9.6]	ND [9.4]	ND [9.5]	ND [9.6]	ND [9.7]	ND [10]	ND [9.7]	ND [9.4]
Phenol	210		µg/L	NA	NA	NA	ND [9.7]	ND [9.6]	ND [9.4]	ND [9.5]	ND [9.6]	ND [9.7]	ND [10]	ND [9.7]	ND [9.4]
PCBs															
Aroclor 1016			µg/L	ND [0.048]	ND [0.047]	ND [0.048] UJ	ND [0.048]	ND [0.049]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.047
Aroclor 1221			µg/L	ND [0.048]	ND [0.047]	ND [0.048] UJ	ND [0.048]	ND [0.049]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.047
Aroclor 1232			µg/L	ND [0.048]	ND [0.047]	ND [0.048] UJ	ND [0.048]	ND [0.049]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.047
Aroclor 1242	**		µg/L	0.025 J	ND [0.047]	ND [0.048] UJ	ND [0.048]	ND [0.049]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.047
Aroclor 1248			µg/L	ND [0.048]	ND [0.047]	ND [0.048] UJ	ND [0.048]	ND [0.049]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.047
Aroclor 1254			µg/L	ND [0.048]	ND [0.047]	ND [0.048] UJ	ND [0.048]	ND [0.049]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.047
Aroclor 1260			µg/L	ND [0.048]	ND [0.047]	ND [0.048] UJ	ND [0.048]	ND [0.049]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.047
Total PCBs	0.2		µg/L	0.025 J	ND [0.047]	ND [0.048] UJ	ND [0.048]	ND [0.049]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.047
Metals					and the land of the			AUGUL LEWIN						The state of the s	
Barium		2,300	µg/L	346	160 B	118 B	142 BJ	87.1 BJ	421 J	411 J	255 J	396 J	489 J	239 J	532 J
Calcium			µg/L	204,000	133,000	214,000	145,000	195,000	146,000	149,000	179,000	158,000	156,000	130,000	195,000
Chromium ⁶	11		µg/L	NA	NA	NA	ND [0.11]	ND [0.11]	ND [10] UB	ND [0.11]	ND [0.11]	ND [0,11]	ND [10] UB	ND [10] UB	ND [10] UI
ron			µq/L	35,300	15,100	12,400	10,700	5.070	4.190	5,310	57,300	10,900	7,500	4,720	48.900
Sodium			µg/L	86,800	449,000	59,400	69.200 J	51,900 J	91.100 J	92,100 J	9.470 J	87,800 J	90,400 J	106,000 J	71,100 J
Thallium		160	µq/L	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.63]	ND [0.63]	ND [0.63]	ND [0.63]	ND [0.63]	ND [0.63]	ND [0.63]	ND [0.63]	ND [0.63]
Zinc		1,200	µg/L	NA	NA	NA I	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Vanadium	12		µg/L	NA	NA	NA	ND [0.36]	ND [0.36]	ND [0.36]	ND [0.36]	ND [50] UB	ND [0.36]	ND [0.36]	ND [0.36]	ND [0.36
Miscellaneous															
Bicarbonate Alkalinity			ma/L	NA	NA	NA I	390	320	450	440	520	520	480	360	710
Carbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA I	NA	NA	NA NA	NA NA	NA NA
Chemical Oxygen Demand			mg/L	ND [20]	ND [20]	25	ND [20]	ND [20]	27.3	ND [20]	20.3	27.3	20.3	23.8	43
Hydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Nitrate/Nitrite Nitrogen			mg/L	NA	NA	NA	0.027 J	0.11	0.018 J	ND [0.1]	0.03 J	0.037 J	NA	0.04 J	NA NA
Sulfate		-	mg/L	NA	NA	NA I	62	320	33	39	0.58	23	29	69	1
Total Alkalinity			ma/L	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
			mg/L	6	4.1	5.9	4.8	4.9	5.6	5.5	6.3	9.6	8.1	2.4	14.7
Total Organic Carbon															

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample II		A PROPERTY.		H85606	H85607	H85608	H85609	H85610	H85611	H85612	H85613	H85614	H85615	H85616	H85617
Well II	Generic	Site Specific	200	MW-13B	DUP [MW-13B]	MW-13AR	MW-8BR	MW-8AR	MW-14AR	MW-3AR	MW-15AR	MW-7	MW-2R	MW-1AR	MW-11R
Date Collected	GSI I: Values	Section Sectio	Units	02/17/10	02/17/10	02/17/10	02/18/10	02/18/10	02/18/10	02/18/10	02/18/10	05/24/10	05/24/10	05/24/10	05/24/10
OCs Date Concette	is I values	MODEL	Ointo												
cetone	1,700		µg/L	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	NA	NA	NA	NA
VOCs									MALES DE LA COLOR	Chamber of the Control of the Contro					
-Methylphenol ⁵	71		ua/L	ND [9.4]	ND [9.4]	ND [9.8]	ND [9.4]	ND [9.4]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.4]	ND [9.4]	ND [9.4]	ND [10
Vaphthalene	13		µg/L	ND [9.4]	ND [9.4]	ND [9.8]	ND [9.4]	ND [9.4]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.4]	ND [9.4]	ND [9.4]	ND [10
Phenol	210		µg/L	ND [9.4]	ND [9.4]	ND [9.8]	ND [9.4]	ND [9.4]	ND [9.5]	ND [9.5]	ND [9.5]	NA	NA	NA	NA
PCBs										THE RELATION	The State of the S		United a Second		
roclor 1016			µg/L	ND [0.047]	ND [0.047]	ND [0.049]	ND [0.049]	ND [0.047]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.04
Aroclor 1221			µg/L	ND [0.047]	ND [0.047]	ND [0.049]	ND [0.049]	ND [0.047]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.04
Aroclor 1232			µg/L	ND [0.047]	ND [0.047]	ND [0.049]	ND [0.049]	ND [0.047]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.04
Aroclor 1242			µg/L	ND [0.047]	ND [0.047]	ND [0.049]	0.057	ND [0.047]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.04
Aroclor 1248			µg/L	ND [0.047]	ND [0.047]	ND [0.049]	ND [0.049]	ND [0.047]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.04
roclor 1254			µg/L	ND [0.047]	ND [0.047]	ND [0.049]	ND [0.049]	ND [0.047]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.04
roclor 1260			µg/L	ND [0.047]	ND [0.047]	ND [0.049]	ND [0.049]	ND [0.047]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.04
Total PCBs	0.2		µg/L	ND [0.047]	ND [0.047]	ND [0.049]	0.057	ND [0.047]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.047]	ND [0.047]	ND [0.04
Vietals															
Barium		2,300	µg/L	169 BJ	174 J	744 J	217 J	417 J	226 J	277 J	291 J	62.3 B	155 B	246	364
Calcium			µg/L	134,000	130,000	251,000	150,000	232,000	147,000	182,000	178,000	163,000	132,000	186,000	136,00
Chromium ⁶	11		µg/L	ND [10] UB	ND [10] UB	ND [10] UB	ND [0.11]	ND [0.11]	ND [10] UB	ND [0.11]	ND [10] UB	NA	NA	NA	NA
ron			µg/L	5,920	5,900	70,000	13,300	41,000	9,700	18,100	11,400	4,350	15,400	62,700	3,980
Sodium			µg/L	98,500 J	95,700 J	20,200 J	93,800 J	31,200 J	164,000 J	240,000 J	252,000 J	44,800	49,600	8,070	78,900
Thallium		160	µg/L	ND [0.63]	ND [0.63]	ND [0.63]	ND [0.63]	ND [0.63]	ND [0.63]	ND [0.63]	ND [0.63]	ND [3.6]	ND [3.6]	ND [3.6]	ND [3.6
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	12		µg/L	ND [0.36]	ND [0.36]	ND [50] UB	ND [0.36]	ND [0.36]	ND [0.36]	ND [0.36]	ND [0.36]	NA	NA	NA	NA
Miscellaneous							And Street	And the said of			Maria Million A	AND DESCRIPTION OF THE PERSON NAMED IN			
Bicarbonate Alkalinity			mg/L	380	380	810	440	710	430	440	450	NA	NA	NA	NA
Carbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chemical Oxygen Demand			mg/L	ND [20]	23.8	27.3	23.8	37.8	43	30.8	41.3 J	ND [20]	ND [20]	46.5	ND [20
Hydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate/Nitrite Nitrogen			mg/L	0.021 J	0.076 J	0.12	0.024 J	0.035 J	0.28	NA	0.037 J	NA	NA	NA	NA
Sulfate			mg/L	53	57	0.26	35	1.2	63	120	90	NA	NA	NA	NA
Total Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon			mg/L	3.4	3.6	11.1	6.2	8.3	6.2	7.2	6.3	3.2	3.4	5.5	5
Total Suspended Solids			ma/L	10.8	12	38	26.5	61.1	17.8	37.5	23.6	NA	NA	NA	NA

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

S	ample ID:	Separate la	(1) (C) (C)		H85619	H85620	H85621	H85622	H85623	H85624	H85625	H85626	H85627	H85628	H85629	H85630
	Well ID:	Generic	Site	200	MW-16B	MW-16A	MW-12B	DUP [MW-12B]	MW-12AR	MW-13B	MW-13AR	MW-8AR	MW-8BR	MW-14AR	MW-15AR	DUP [MW-15AF
		GSI	Specific		05/25/10	05/25/10	05/25/10	05/25/10	05/25/10	05/26/10	05/26/10	05/26/10	05/26/10	05/26/10	05/27/10	05/27/10
	Collected:	Values	WQBEL	Units	05/25/10	00/20/10	05/25/10	05/25/10	08/20/10	00/20/10	08/20/10	05/20/10	05/26/10	03/20/10	00/2//10	00/2//10
VOCs Acetone		1,700		µg/L	NA	I NA	l NA	T NA	NA I	NA	I NA I	NA	I NA	l NA	NA	l NA
SVOCs		1,700		Pg/L	IVA	INA	19/5	14/5	1471	1473	1423	1471	107	7,47,		
		-		I n	ND to ti	I ND MOI	ND to El	I ND 10 FI	ND [9.4]	ND [9.4]	ND [9.5]	ND [9.5]	ND [9.6]	ND [9.5]	ND [9.6]	ND [9.6]
4-Methylphenol ⁵		71		µg/L	ND [9.5]	ND [10]	ND [9.5]	ND [9.5]			ND [9.5]		ND [9.6]	ND [9.5]	ND [9.6]	ND [9.6]
Naphthalene		13		µg/L	ND [9.5]	ND [10]	ND [9.5]	ND [9.5]	ND [9.4]	ND [9.4]		ND [9.5] NA	ND [9.6]	ND [9.5]	NA NA	NA NA
Phenol		210		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	INA	INA	INA	INA
PCBs																
Aroclor 1016				µg/L	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.051] UJ	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]
Aroclor 1221				µg/L	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.051] UJ	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]
Aroclor 1232				µg/L	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.051] UJ	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]
Aroclor 1242				µg/L	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.051] UJ	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]
Aroclor 1248				µg/L	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.051] UJ	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]
Aroclor 1254				µg/L	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.051] UJ	ND [0.047]	ND [0.047] UJ	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]
Aroclor 1260				µg/L	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.051] UJ	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]
Total PCBs		0.2		μg/L	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.051] UJ	ND [0.047]	ND [0.047] UJ	ND [0.047]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.047]
Metals																
Barium			2,300	µg/L	485	379	228	226	488	160 B	816	271	190 B	222	279	272
Calcium				µg/L	161,000	156,000	127,000	128,000	185,000	125,000	268,000	199,000	141,000	151,000	170,000	167,000
Chromium ⁶		11		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron				µg/L	7,740	12,000	3,800	3,810	43,600	5,970	86,200	26,000	12.000	10.300	11.000	10,900
Sodium				µg/L	84,700	75,900	90,600	91,600	71,300	87,700	12,700	1,060 B	87,200	154,000	224.000	222,000
Thallium			160	µg/L	ND [3.6]	ND [3.6]	ND [3.6]	ND [3.6]	ND [3.6]	ND [3.6]	ND [3.6]	ND [3.6]	ND [3.6]	ND [3.6]	ND [3.6]	ND [3.6]
Zinc			1,200	µg/L	NA	NA	NA	NA	NA	NA	NA I	NA	NA	NA	NA	NA
Vanadium		12		µg/L	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Miscellaneous				-	A Control of the last		Depart Harris									
Bicarbonate Alkalinity				ma/L	NA	NA NA	NA NA	I NA	NA I	NA	I NA I	NA	l NA	NA NA	NA	NA NA
Carbonate Alkalinity				mg/L	NA	NA	NA	NA	NA	NA	NA I	NA	NA	NA	NA	NA NA
Chemical Oxygen Der	mand			mg/L	20.3	27.3	ND [20]	20.3	36	ND [20]	27.3 J	23.8	ND [20]	ND [20]	ND [20]	27.3
Hydroxide Alkalinity				mg/L	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Nitrate/Nitrite Nitrogen				mg/L	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA
Sulfate				mg/L	NA	NA	NA	NA NA	NA I	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
Total Alkalinity				mg/L	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
Total Organic Carbon				mg/L	7.9	8.3	1.9	1.9	11.9	2.8	6	3.8	3.5	3.8	5.2	
Total Suspended Solid	de			mg/L	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	5.3 NA

TABLE 1

POST-REMEDIATION GROUNDWATER SAMPLING ANALYTICAL RESULTS SUMMARY

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample ID	:	1000000		H85631	H85632	H85633	H85634	H85635	H85636	H85637	H85638	H85639	H85640	H85641	H85642
Well ID	Generic		1223	MW-3AR	MW-7	MW-2R	DUP [MW-2R]	MW-11RR	MW-1AR	Rinse Blank	MW-16A	MW-16B	MW-12AR	MW-12B	MW-13AR
	GSI	Specific	100000000000000000000000000000000000000					00/04/40	00/04/40	[MW11RR] 08/24/10	08/24/10	08/24/10	08/24/10	08/25/10	08/25/10
Date Collected	: Values	WQBEL	Units	05/27/10	08/23/10	08/23/10	08/23/10	08/24/10	08/24/10	08/24/10	08/24/10	00/24/10	00/24/10	00/20/10	00/25/10
/OCs		_			1 114	NIA	NA I	NIA	NA	I NA	NIA	I NA	NA NA	NA	NA NA
Acetone	1,700		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	INA	INA	INA	INA
SVOCs															
4-Methylphenol ⁵	71		μg/L	ND [10]	ND [9.6]	ND [10]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.6]	ND [9.5]	ND [9.4]	ND [10]	ND [9.6]	ND [9.4]
Naphthalene	13		µg/L	ND [10]	ND [9.6]	ND [10]	ND [9.4]	ND [9.4]	ND [9.4]	ND [9.6]	ND [9.5]	ND [9.4]	ND [10]	ND [9.6]	ND [9.4]
Phenol	210		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs		10000				Sales of the second									
Aroclor 1016			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.047]
Aroclor 1221			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.047]
Aroclor 1232			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.047]
Aroclor 1242			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	0.044 J
Aroclor 1248			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.047]
Aroclor 1254			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.047]
Aroclor 1260			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	ND [0.047]
Total PCBs	0.2		µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]	0.044 J
Metals															
Barium		2,300	µg/L	267	75.1 J	135 J	147 J	478	328	ND [200]	428	500	487	252	742
Calcium			µg/L	171,000	155,000	129,000	137,000	153,000	220,000	318 J	165,000	162,000	188,000	135,000	243,000
Chromium ⁶	11		µg/L	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron			µg/L	23,100	12,500	10,700	11,200	5,880	73,300	33.7 J	12,100	7.650	39.700	5.130	70.200
Sodium			µg/L	150,000	57,900	70,600	76,800	94,400	12,100	1,100 J	82,800	88,200	82,500	99.000	31,500
Thallium		160	µg/L	ND [3.6]	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
Vanadium	12		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA-
Miscellaneous								Market Market Market	E CONTRACTOR OF THE PARTY OF TH						
Bicarbonate Alkalinity			ma/L	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	l NA	NA	I NA
Carbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chemical Oxygen Demand			mg/L	ND [20]	ND [20]	ND [20]	ND [20]	25.2	33.4	ND [20]	25.2	33.4	45.6	ND [20]	33.4
Hydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate/Nitrite Nitrogen			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon			mg/L	5.1	3.3	4.4	4.4	6.9	6.8	ND [1]	8.9	7.8	12.5	2	6.7
Total Suspended Solids			ma/L	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA NA

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample I			1000	H85643	H85644	H85645	H85646	H85647	H85648	H85649	H85650	H85651	H85652	H85653	H85654
Well I	D. Generic		1390	MW-13B	DUP [MW-13B]	MW-8BR	MW-8AR	MW-14AR	MW-15AR	MW-3AR	MW-7	MW-1AR	MW-2R	MW-11RR	Rinse Blant
	GSI	Specific				00/05/40	00/00/40	00/00/40	08/27/10	08/27/10	44145140	44/40/40	444040	11/16/10	[MW-11RR 11/16/10
Date Collecte	d: Values	WQBEL	Units	08/25/10	08/25/10	08/25/10	08/26/10	08/26/10	08/2//10	08/2//10	11/15/10	11/16/10	11/16/10	11/16/10	11/16/10
OCs								NIA.	NA	NIA			MA	1 110	1 114
cetone	1,700		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SVOCs															
-Methylphenol ⁵	71		µg/L	ND [9.4]	ND [9.4]	ND [9.6]	ND [9.6]	ND [9.6]	ND [9.6]	ND [9.5]	ND [9.6]	ND [9.5]	ND [9.6]	ND [9.6]	ND [9.6]
Vaphthalene	13		µg/L	ND [9.4]	ND [9.4]	ND [9.6]	ND [9.6]	ND [9.6]	ND [9.6]	ND [9.5]	ND [9.6]	ND [9.5]	ND [9.6]	ND [9.6]	ND [9.6]
Phenol	210		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBs			3.10.1.6	Commence of the last							The second second		Part of the last		
roclor 1016			µg/L	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]
Aroclor 1221			µg/L	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]
Aroclor 1232			µg/L	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]
Aroclor 1242			µg/L	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.047]	ND [0.048]	ND [0.048] UJ	ND [0.049]	ND [0.048]	ND [0.048]
Aroclor 1248			µg/L	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]
Aroclor 1254			µg/L	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.047]	ND [0.048]	ND [0.048] UJ	ND [0.049]	ND [0.048]	ND [0.048]
Aroclor 1260			µg/L	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.049]	ND [0.048]	ND [0.048]
Total PCBs	0.2		µg/L	ND [0.047]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.047]	ND [0.048]	ND [0.048] UJ	ND [0.049]	ND [0.048]	ND [0.048]
Metals					THE RESIDENCE OF THE PARTY OF T		- I I I I I I I I I I I I I I I I I I I	STATE OF THE STATE	SERVICE DE LA CONTRACTOR DE LA CONTRACTO				THE RESIDENCE		
Barium		2,300	µg/L	177 J	170 J	213	380	260	304	245	71.6 J	320	151 J	452	ND [200]
Calcium			µg/L	130,000	125,000	146,000	206,000	169,000	178,000	153,000	166,000	214,000	151,000	155,000	114 J
Chromium ⁶	11		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron			µg/L	6,660	6,400	12,400	33,800	11,000	11,500	12,300	4,430	77.200	10.700	6.160	ND [200]
Sodium			µg/L	93,200	89,700	91,400	32,200	185,000	248,000	195,000	51,900	9,160	77,600	96,600	163 J
Thallium		160	µg/L	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]	ND [25] UB
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	12		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous												E CONTRACTOR STREET		CALLYN.	
Bicarbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	I NA	I NA
Carbonate Alkalinity			mg/L	NA	NA ·	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chemical Oxygen Demand			mg/L	ND [20]	23.2	ND [20]	29.3	ND [20]	27.2	ND [20]	ND [20]	21.1	ND [20]	ND [20]	ND [20]
Hydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate/Nitrite Nitrogen			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
otal Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA	NA	NA
Total Organic Carbon			mg/L	3	2.5	4.3	11	5.1	5.7	5.6	3.9	6.4	4	5.7	ND [1]
Total Suspended Solids			ma/L	NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA	NA	NA

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample II		100000		H85655	H85656	H85657	H85658	H85659	H85660	H85661	H85662	H85663	H85664	H85665	H85666
Well II	Generic		1133	MW-16A	MW-16B	MW-12B	MW-13B	MW-12AR	DUP [MW-12AR]	MW-8BR	MW-13AR	MW-8AR	MW-14AR	MW-3AR	MW-15AR
Date Collecte	d: Values	Specific		11/16/10	11/16/10	11/17/10	11/17/10	11/17/10	11/17/10	11/18/10	11/18/10	11/18/10	11/18/10	11/19/10	11/19/10
VOCs	a, I values	INGDLL	Tomes	11110/10	11110110	11111110							C DELL'AND RE		
Acetone	1,700		µg/L	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
SVOCs		197 8 0										THE RESIDENCE		A CONTRACTOR	CENTRAL PROPERTY.
4-Methylphenol ⁵	71		ua/L	ND [9.6]	ND [9.5]	ND [9.7]	ND [9.6]	ND [9.6]	ND [9.4]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.5]	ND [9.4]
Naphthalene	13		µg/L	ND [9.6]	ND [9.5]	ND [9.7]	ND [9.6]	ND [9.6]	ND [9.4]	ND [9.5]	ND [9.5]	ND [9.5] UJ	ND [9.5]	ND [9.5]	ND [9.4]
Phenol	210		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs														THE PARTY	
Aroclor 1016			lua/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]
Aroclor 1221			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]
Aroclor 1232			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]
Aroclor 1242	-		µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]
Aroclor 1248			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]
Aroclor 1254			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]
Aroclor 1260			µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]
Total PCBs	0.2		µg/L	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.047]
Metals						COTO								Self-or Manager	
Barium		2,300	µg/L	386	496	250	178 J	580	561	215	667	393	226	242	268
Calcium			µg/L	158,000	164,000	136,000	131,000	218,000	214,000	150,000	241,000	187,000	151,000	152,000	157,000
Chromium ⁶	11		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron			µg/L	10,700	7,760	4,960	6,390	42,700	41,800	13,500	64,800	27,900	10,100	10,500	10,100
Sodium			µg/L	90,700	96,900	101,000	95,800	89,500	87,300	99,800	37,700	81,500	137,000	193,000	222,000
Thallium		160	µg/L	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]	ND [25]					
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	12	**	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous											The second second second			Key Line and	
Bicarbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Carbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chemical Oxygen Demand	-		mg/L	ND [20]	ND [20]	ND [20]	ND [20]	37.4	25.2	ND [20]	ND [20]	23.2	31.3	ND [20]	ND [20]
Hydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate/Nitrite Nitrogen			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon			mg/L	7.2	6.9	2.5	2.6	15.3 D	14.9	3.8	8.4	14.4	4.4	5.2	5.1
Total Suspended Solids			mg/L	NA	NA		NA								

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample	ID:	B 22 (22)	1356	H85667	H85668	H85669	H85670	H85671	H85672	H85673	H85674	H85675	H85676	H85677	H85678
Well	ID: Generi	Site Specific		DUP [MW-15AR]	MW-7	MW-2R	MW-1AR	MW-16A	MW-11RR	RINSE BLANK [MW-11RR]	MW-16B	DUP [MW-16B]	MW-12B	MW-12AR	MW-13B
Date Collect	The second second			11/19/10	05/09/11	05/09/11	05/09/11	05/10/11	05/10/11	05/10/11	05/10/11	05/10/11	05/10/11	05/11/11	05/11/11
OCs													distributed by the		
cetone	1,700	>	µg/L	NA I	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VOCs	1100000				and the facilities										
-Methylphenol ⁵	71		ua/L	ND [9.5]	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
laphthalene	13		ug/L	ND [9.5]	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
henol	210		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBs					and the second								A Comment of the	Carlotte Total	Lander Land
Aroclor 1016			l ua/L	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048] UJ	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.050] U
Aroclor 1221			µg/L	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048] UJ	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.050] U
Aroclor 1232			µg/L	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048] UJ	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.050] L
Aroclor 1242			µg/L	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048] UJ	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.050] U
Aroclor 1248			µg/L	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048] UJ	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.050]
roclor 1254			µg/L	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048] UJ	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.050]
roclor 1260			µg/L	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048] UJ	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.050]
otal PCBs	0.2		µg/L	ND [0.047]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048] UJ	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.048]	ND [0.050] I
Metals															
Barium		2,300	µg/L	265	265	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium			µg/L	156,000	156,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium ⁶	11		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ron			µg/L	9,900	9,900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium			µg/L	219,000	219,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
hallium		160	µg/L	ND [25]	ND [25]	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
linc		1,200	µg/L	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
'anadium	12		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
liscellaneous										CHELL DISTRICT					
Bicarbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chemical Oxygen Demand			mg/L	ND [20]	ND [20]	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
lydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
litrate/Nitrite Nitrogen			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ulfate			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
otal Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
otal Organic Carbon			mg/L	5.1	6.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Suspended Solids			mg/L	NA	NA	NA	NA	NA I	NA	NA	NA	NA I	NA	NA	NA

TABLE 1

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Samp	ole ID:	A STATE OF	2000	H85679	H85680	H85681	H85682	H85683	H85684	H85685	H85686	H85687	H85688	H85689	H85690
W	ell ID: Generic			DUP (MW-13B)	MW-13AR	MW-8BR	MW-8AR	MW-14AR	MW-15AR	MW-3AR	MW-2R	MW-1AR	MW-16A	MW-11RR	Rinse Blan
	GSI	Specific							00114144	02144144	00/04/40	06/04/12	06/04/12	06/04/12	[MW-11RR
	ected: Values	WQBEL	Units	05/11/11	05/11/11	05/11/11	05/11/11	05/11/11	05/11/11	05/11/11	06/04/12	06/04/12	06/04/12	06/04/12	06/04/12
OCs .															
Acetone	1,700		µg/L	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA
SVOCs															
4-Methylphenol ⁵	71		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	13		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenol	210		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs				NAME OF PERSONS					A A LOT OF LAND						
Aroclor 1016			µg/L	ND [0.050] UJ	ND [0.048] UJ	ND [0.049] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.052]	ND [0.049]	ND [0.054]	ND [0.048]	ND [0.050
Aroclor 1221			µg/L	ND [0.050] UJ	ND [0.048] UJ	ND [0.049] UJ	ND [0.048] UJ	ND [0.048] UJ	0.052 J	ND [0.048] UJ	ND [0.052]	ND [0.049]	ND [0.054]	ND [0.048]	ND [0.050
Aroclor 1232			µg/L	ND [0.050] UJ	ND [0.048] UJ	ND [0.049] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.052]	ND [0.049]	ND [0.054]	ND [0.048]	ND [0.050
Aroclor 1242			µg/L	ND [0.050] UJ	ND [0.048] UJ	ND [0.049] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.052]	ND [0.049]	ND [0.054]	ND [0.048]	ND [0.050
Aroclor 1248			µg/L	ND [0.050] UJ	ND [0.048] UJ	ND [0.049] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.052]	ND [0.049]	ND [0.054]	ND [0.048]	ND [0.050
Aroclor 1254			µg/L	ND [0.050] UJ	ND [0.048] UJ	ND [0.049] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.052]	ND [0.049]	ND [0.054]	ND [0.048]	ND [0.050
Aroclor 1260			µg/L	ND [0.050] UJ	ND [0.048] UJ	ND [0.049] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.048] UJ	ND [0.052]	ND [0.049]	ND [0.054]	ND [0.048]	ND [0.050
Total PCBs	0.2		µg/L	ND [0.050] UJ	ND [0.048] UJ	ND [0.049] UJ	ND [0.048] UJ	ND [0.048] UJ	0.052 J	ND [0.048] UJ	ND [0.052]	ND [0.049]	ND [0.054]	ND [0.048]	ND [0.050
Metals				35/4/2010/2010	Down Blanch				Manual surfess						
Barium		2,300	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium			µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium ⁶	11		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron			µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium			µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium		160	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	12		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous	active to be							The State of the S	Contract Contract						
Bicarbonate Alkalinity		-	mg/L	NA	NA	NA	NA	NA	NA	NA I	NA	NA	NA	NA NA	NA NA
Carbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chemical Oxygen Demand	d		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Hydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate/Nitrite Nitrogen			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Sulfate	-		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Total Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Total Suspended Solids			ma/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

TABLE 1

POST-REMEDIATION GROUNDWATER SAMPLING ANALYTICAL RESULTS SUMMARY

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample II	Generic	Site		H85691 MW-16B	H85692 MW-12AR	H85693 DUP	H85694 MW-13B	H85695 MW-12B	H85696 MW-13AR	H85697 MW-3AR	H85698 MW-15AR	H85699 Rinse Blank	H85700 Rinse Blank	H85701 MW-14AR	H85702 DUP
	GSI	Specific	1			[MW-12AR]		00100140	00/07/40	00/05/40	00105140	[MW-15AR] 06/06/12	[MW-14AR] 06/06/12	06/06/12	[MW-14AR] 06/06/12
Date Collected	: Values	WQBEL	Units	06/05/12	06/05/12	06/05/12	06/05/12	06/05/12	06/05/12	06/05/12	06/05/12	06/06/12	06/06/12	06/06/12	06/06/12
VOCs															
Acetone	1,700		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SVOCs															
4-Methylphenol ⁵	71		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	13		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenol	210		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs	111011			New York Cont.	The same of the same								Eight and I		
Aroclor 1016			µg/L	ND [0.049]	ND [0.054]	ND [0.048]	ND [0.049]	ND [0.053]	ND [0.048]	ND [0.047]	ND [0.055]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.049]
Aroclor 1221			µg/L	ND [0.049]	ND [0.054]	ND [0.048]	ND [0.049]	ND [0.053]	ND [0.048]	ND [0.047]	ND [0.055]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.049]
Aroclor 1232			µg/L	ND [0.049]	ND [0.054]	ND [0.048]	ND [0.049]	ND [0.053]	ND [0.048]	ND [0.047]	ND [0.055]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.049]
Aroclor 1242			µg/L	ND [0.049]	ND [0.054]	ND [0.048]	ND [0.049]	ND [0.053]	ND [0.048]	ND [0.047]	ND [0.055]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.049]
Aroclor 1248			µg/L	ND [0.049]	ND [0.054]	ND [0.048]	ND [0.049]	ND [0.053]	ND [0.048]	ND [0.047]	ND [0.055]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.049]
Aroclor 1254			µg/L	ND [0.049]	ND [0.054]	ND [0.048]	ND [0.049]	ND [0.053]	ND [0.048]	ND [0.047]	ND [0.055]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.049]
Aroclor 1260			µg/L	ND [0.049]	ND [0.054]	ND [0.048]	ND [0.049]	ND [0.053]	ND [0.048]	ND [0.047]	ND [0.055]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.049]
Total PCBs	0.2		µg/L	ND [0.049]	ND [0.054]	ND [0.048]	ND [0.049]	ND [0.053]	ND [0.048]	ND [0.047]	ND [0.055]	ND [0.048]	ND [0.047]	ND [0.049]	ND [0.049]
Metals				Total Land		0									
Barium		2,300	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium			µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium ⁶	11		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron			µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium			µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium		160	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc		1,200	µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	12		µg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous															
Bicarbonate Alkalinity			mg/L	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA
Carbonate Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chemical Oxygen Demand			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Hydroxide Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate/Nitrite Nitrogen			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Alkalinity			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Suspended Solids			mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE KING HIGHWAY LANDFILL OPERABLE UNIT

Sample ID: Well ID: Date Collected:	Generic GSI	Site Specific	Heite	H85703 MW-8BR 06/06/12	H85704 MW-8AR 06/06/12	H85705 MW-7 06/06/12
VOCs Date Collected:	values	WQBEL	Units	00/00/12	06/06/12	06/06/12
Acetone	1,700		µg/L	NA	NA	NA NA
SVOCs	1,700		I Pg/L I	INA	INO	INA
4-Methylphenol ⁵	71		µg/L	NA	NA NA	NA NA
Naphthalene	13		µg/L µg/L	NA	NA NA	NA NA
Phenol	210		µg/L	NA	NA NA	NA NA
PCBs	210		µg/L	INA	INA	INA
Aroclor 1016			µg/L	ND [0.055]	ND [0.053]	ND [0.048]
Aroclor 1016 Aroclor 1221				ND [0.055]	ND [0.053]	ND [0.048]
			µg/L		ND [0.053]	ND [0.048]
Aroclor 1232			µg/L	ND [0.055]		
Aroclor 1242			µg/L	ND [0.055]	ND [0.053]	ND [0.048]
Aroclor 1248			µg/L	ND [0.055]	ND [0.053]	ND [0.048]
Aroclor 1254			µg/L	ND [0.055]	ND [0.053]	ND [0.048]
Aroclor 1260			µg/L	ND [0.055]	ND [0.053]	ND [0.048]
Total PCBs	0.2		µg/L	ND [0.055]	ND [0.053]	ND [0.048]
Metals						
Barium		2,300	µg/L	NA	NA	NA
Calcium			µg/L	NA	NA	NA
Chromium ⁶	11		µg/L	NA	NA	NA
Iron			μg/L	NA	NA	NA
Sodium			µg/L	NA	NA	NA
Thallium		160	µg/L	NA	NA	NA
Zinc		1,200	µg/L	NA	NA	NA
Vanadium	12		µg/L	NA	NA	NA
Miscellaneous	48.00	Marine.				
Bicarbonate Alkalinity			mg/L	NA	NA	NA
Carbonate Alkalinity			mg/L	NA	NA	NA
Chemical Oxygen Demand			mg/L	NA	NA	NA
Hydroxide Alkalinity			mg/L	NA	NA	NA
Nitrate/Nitrite Nitrogen			mg/L	NA	NA	NA
Sulfate			mg/L	NA	NA	NA
Total Alkalinity			mg/L	NA	NA	NA
Total Organic Carbon			mg/L	NA	NA	NA
Total Suspended Solids			mg/L	NA	NA	NA

Notes:

- 1. ND Not detected. Practical quantitation limits are shown in brackets.
- 2. NA Not analyzed.
- 3. µg/L Micrograms per liter.
- 4. mg/L Milligrams per liter.
- 5. GSI Value is for methylphenols.
- 6. Total Chromium is being analyzed, but the GSI Value refers to Chromium (VI) oxidation state.
- 7. The Generic GSI Values are obtained from the KHL-OU Hydrogeologic Monitoring Plan (September 2002).
- 8. The WQBEL values are per the MDEQ Surface Water Quality Division, as recommended in a January 22, 1998 interoffice communication.
- 9. Sample IDs H85549 and H85550 correspond to Matrix Spike/Matrix Spike Duplicate samples associated with Sample ID H85548, and were therefore not included hereon.

Definitions of Data Qualifiers:

- B The reported value was obtained from a reading less than the contract required detection limit (CRDL) but greater than or equal to the instrument detection limit (IDL).
- J The compound/analyte was positively identified; however, the associated numerical value is an estimated concentration only.
- UJ The compound/analyte was not detected above the reported sample quantitation/detection limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation/detection.
- UB The compound/analyte was considered non-detect at the listed value due to associated blank contamination.

Attachment 2B

OU4 Results

TABLE 2

SUMMARY OF APRIL 2010 FOLLOW-UP GROUNDWATER ANALYTICAL RESULTS 12th STREET LANDFILL OTSEGO TOWNSHIP, MICHIGAN

Sample Location Sample Identification Sample Date Sample Elevation (fect AMSL) Screen Depth (feet bgs) Sample Type	Groun Units	udwater Cla a	eanup Crit b	eria (1)	MW-101S GW-56393-040611-EV-002 4/4/2011 702.35 - 663.35 32-39	MW-101S GW-56393-040611-EV-003 4/4/2011 702.35 - 663.35 32-39 Duplicate	MW-101D GW-56393-040611-EV-001 44/2011 664.33 - 589.33 70-75	MW-1025 GW-56393-040811-EV-017 4/4/2011 701.18 - 691.18 3-10	MW-102D GW-56393-040811-EV-015 4/8/2011 664.43 - 619.43 40-45	MW-102D GW-56393-040811-EV-016 4/8/2011 664.43 - 619.43 40-45 Duplicate
W. J.										
Metals										
Aluminum	μg/L	50	50	-	87	9.6	185 ^{ab}	65.6 ^{4b}	43.1	67.2 ^{AF}
Antimony	μg/L	6	6	130	0.05 ∪	0.02 [0.11	0.05 U	0.05 U	0.05 U
Arsenic	μg/L	10	10	10	019]	0 2 5 J	1.10	0 44 J	0.18 J	0.44 }
Barrum	μg/L	2000	2000	1400	73.1	727	78.9	818	68.8	83.4
Beryllium	μg/L	4	4	41	0.004	0.020 ∪	0.022	0.005 [0.004 J	0 004 }
Cadmium	μg/L	5	5	5.1	0.005)	0.005 j	0.021	0.023	0.006 J	0.025
Chromium	μg/L	100	100	11	0.41	0 49	1.11	0.34 U	0.26 U	0 31 U
Cobalt	μg/L	40	100	100	0.124	0.128	1.040	0.515	0 153 J	0.506 J
Copper	μg/L	1000	1000	23	0.77	0.79	2.94	0.93	0.78	0.94
Iron	μg/L	300	300	-	80.8	68.5	1510 ^{ah}	426 J ^{4h}	1711	430 J ^{a6}
Lead	μg/L	4	4	34	0.041	0.048	1.200	0.207	0.183	0.208
Magnesium	µg/L	400000	1100000	-	25300	24900	24300	29000	24200	28900
Manganese	μg/L	50	50	5200	2 94	2.90	65.8 ^{ab}	579*h	8.351	577 J ^{ah}
Mercury	μg/L	2	2	0.0013	0.20 U	0.20 ∪	0 20 U	0.20 U	0.20 U	0.20 U
Nickel	μg/L	100	100	130	1.03	1.07	2 41	2,15	0.92	2.11
Selenium	μg/L	50	50	5	0.3 J	0,4 J	1.0 U	1.0 U	10 U	1.0 U
Silver	μg/L	34	98	0.2	0.020 U	0.020 ∪	0.020 U	0.020 ∪	0.020 ∪	0 020 ∪
Sodium	μg/L	120000	350000	-	23400	23000	24900	20000	20900	19900
Thallium	μg/L	2	2	3.7	0.003 j	0.003 J	0.020 J	0.051	0.020 ∪	0.051
Vanadium	μg/L	4.5	62	12	0.17 J	0 16 J	1.08	0.36	0.26	0.34
Zinc	μg/L	2400	5000	310	0.78	1.21	52.4	1.27	1.46	1.43
PCBs										
Aroclor-1016 (PCB-1016)	μg/L			_	0 021 LiJ	0.020 UJ	0.020 ปุ	0.020 UĮ	0.020 U}	0. 02 0 U]
Aroclor-1221 (PCB-1221)	μg/L	-	-	-	0.041 UJ	0 040 UJ	0.040 LJ	0 040 UJ	0.040 UJ	0.040 UJ
Aroclor-1232 (PCB-1232)	μg/L	-	-	-	0.021 UJ	0.020 UJ	0.020 UJ	0.0 2 0 UJ	0.020 U)	0.020 UJ
Aroclor-1242 (PCB-1242)	μg/L	-	-	-	0.021 UJ	0 020 UJ	0.020 UJ	0 020 LIJ	0.020 UJ	0.020 UJ
Aroclor-1248 (PCB-1248)	μg/L	-	-	-	0.021 UJ	0.020 UI	0 020 UJ	0.020 UJ	0 020 UI	0 020 UJ
Aroclor-1254 (PCB-1254)	μ g /L	-	-	-	0.021 UI	0.028 UJ	0.020 UJ	0.020 U)	0.020 U)	0.020 U]
Aroclor-1200 (PCB-1260)	µg/L		-	-	0.021 UJ	0 020 ∪}	0.020 UJ	0.020 U)	0.020 U)	0.020 U)
Total PCBs	μg/L	0.5	0.5	0.2	ND	ND	ND	ND	ND	ND

TABLE 2

Sample Location Sample Identification Sample Date Sample Elevation (feet AMSL) Screen Depth (feet bgs)					MW-1015 GW-56393-040611-EV-002 4/4/2011 702.35 - 663.35 32-39	MW-1015 GW-56393-040611-EV-003 4/4/2011 702.35 - 663.35 32-39	MW-101D GW-56393-040611-EV-001 4/6/2011 664.33 - 589.33 70-75	MW-102S GW-56393-040811-EV-017 4/8/2011 701.18 - 691.18 3-10	MW-102D GW-56393-040811-EV-015 4/8/2011 664.43 - 619.43 40-45	MW-102D GW-56393-640811-EV-016 4/8/2011 664.43 - 619.43 40-45
Sample Type	Groun	dwater Cl	ennıp Crit	eria (1)	•	Duplicate				Duplicate
	Units	а	b	c						
Volatile Organic Compounds										
Acetone	μg/L	730	2100	1700	R	R	R	R	R	R
Benzene	μg/L	5	5	200	0.50 UJ	0.50 U}	0.50 ∪{	0 50 じ	0.50 U	0 50 U
Bromobenzene	μg/L	18	50	-	2.0 LJ	2.0 L'J	2.0 UJ	2.0 L ¹)	2.0 UI	2.0 UJ
Bromodichloromethane	μg/L	80	80	ID	0.50 UJ	0 50 UJ	0.58	0.50 UI	0.50 UI	0.50 UJ
Bromoform	μg/L	80	80	ID	0.50 UJ	0.30 U)	0.50 UJ	0.50 UJ	0.50 ป]	0.50 UJ
Bromomethane (Methyl bromide)	μg/L	10	29	35	0.50 UJ	0.50 UJ	0.50 UJ	0 50 UJ	0.50 UJ	0 50 UJ
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	13000	38000	2200	R	R	R	R	R	R
N-Butylbenzene	μg/L	80	230	ID	2.0 U[2.0 U	2.0 U!	2.0 L/J	2.0 년1	2.0 UJ
Carbon disulfide	μg/L	800	2300	ID	0.50 U)	0.50 U)	0.50 U)	0.50 UJ	0.50 UJ	0 50 U)
Carbon tetrachloride	μg/L	5	5	45	0.50 UJ	0.50 UJ	0.50 UI	0.50 U)	0.50 UJ	0 50 UJ
Chlorobenzene	μg/L	100	100	25	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U)	0 50 UJ
Chlorobromomethane	μg/L	-	-	-	0.50 UJ	0.50 UJ	0.50 UI	0 50 UJ	0.50 UI	0.50 ∪∫
Chloroethane	μg/L	430	1700	1100	0 אין 0 50	0.50 じJ	0.50 U)	0 50 UJ	0.50 UJ	0.50 U)
Chloroform (Trichloromethane)	μg/L	80	80	350	0.50 UJ	0.50 UJ	1.1	0 50 UJ	0 090 J	0.50 UJ
Chloromethane (Methyl chloride)	hg/r	260	1100	ID	0.50 U)	0.50 U)	0 50 LY	0.080 J	0.080 }	0.080 [
2-Chlorotoluene	μg/L	150	420	ID	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 U)	2.0 UJ
4-Chlorotoluene	µg/L	-	-	-	2.0 U)	2.0 UJ	2.0 UJ	2.0 UI	2.0 U}	2.0 UJ
Cymene (p-Isopropyltoluene)	μg/L	-	-	-	2.0 UJ	2.0 LIJ	2 0 UJ	2 0 UJ	2.0 UI	2.0 UJ
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	0.2	1) 2	-	R	R	R	2.0 UJ	2 0 U[2.0 UJ
Dibromochloromethane	µg/L	80	80	ID	0.50 UJ	0.50 UJ	0 24 }	0.50 UJ	0.50 U1	0.50 UJ
1.2-Dibromoethane (Ethylene dibromide)	μg/L	0.05	0.05	5.7	2.0 U į	2.0 UI	2.0 U}	20 Uj	20 U	2.0 UJ
Dibromomethane	μg/L	80	230	-	0.50 UJ	0 50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	C.50 UI
1,2-Dichlorobenzene	μg/L	600	600	13	0.50 UJ	0.50 UJ	0 50 UJ	0.50 UJ	0 50 UJ	C 50 UJ
1,3-Dichlorobenzene	μg/L	6.6	19	28	0.50 UJ	0.50 UI	0 50 UI	050 U)	0.50 UJ	(1.50 U)
1,4-Dichlorobenzene	μg/L	75	75	17	0.50 UI	0 50 UJ	0.50 U]	0.50 UJ	0.50 C}	0 50 บ เ
Dichlorodifluoromethane (CFC-12)	µg/L	1700	4800	ID	0.50 ∪J	0.50 ∪	0 50 UJ	0.50 UJ	0.50 UJ	0.50 U)
1,1-Dichloroethane	μg/L	880	2500	740	0 50 UJ	0.50 L/J	0 50 LIJ	0.50 UJ	0 50 U[0.50 U/
1,2-Dichloroethane	μg/L	5	5	360	0.50 ∪	0.50 L!]	0.50 UJ	0.50 UI	0.50 UI	0 50 บ)
1,1-Dichloroethene	μg/L	7	7	130	0.50 UI	0.50 UT	0.50 UJ	0.50 UJ	0.50 U)	0.50 UI
cis-1,2-Dichloroethene	μg/L	70	70	620	0.50 L ¹ J	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0 50 UJ
trans-1,2-Dichloroethene	μg/L	100	100	1500	0 50 UJ	0.50 UI	0 50 UJ	0.50 UJ	0 50 UI	0.50 UJ
1,3-Dichloropropane	μg/L	-	-	-	0.50 UJ	0.50 UJ	0.50 U)	0.50 UI	0.50 UJ	0.50 U]
1.2-Dichloropropane	μg/L	5	5	230	0.50 UJ	0.50 UJ	0.50 UI	0.50 UI	0.50 UJ	0.50 U)
2,2-Dichloropropane	μg/L	-	-	-	0.50 UJ	0.50 UJ	0.50 UI	0.50 UI	0.50 U)	0.50 U)
1,1-Dichloropropene	µg/L	-	-		0.50 UJ	0.50 U)	0 50 UJ	0.50 U)	0.50 UJ	0.50 U
cis-1,3-Dichloropropene	μg/L	-	-	-	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0 50 UJ	0.50 UJ

+ RA 056393Memo-11 Tables

TABLE 2

Units a b c	
trans-1.3-Dichloropropene µg/L 0.50 Uj 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ	
Ethylbenzene µg/L 74 74 18 0.50 Uj 0.50 Uj 0.50 Uj 0.50 Uj 0.50 Uj 0.50 Uj	
Hexachiorobutadiene µg/L 15 42 0.053 2.0 U) 2.0 UJ 2.0 UJ 2.0 UJ 2.0 UJ 2.0 UJ 2.0 UJ	
2-Hexanone µg/L 1000 2900 ID R R R 20UJ 20UJ 20UJ 20UJ	
Isopropyl benzene µg/L 800 2300 28 20 UJ 2.0 UJ 2.0 UJ 2.0 UJ 2.0 UJ 2.0 UJ 2.0 UJ	
4-Methyl-2-pentanone(MIBK) μg/L 1800 5200 ID R R R R R R R	
Methylone chloride µg/L 5 5 1500 2.0 UJ	
Naphthalene µg/L 520 1500 11 2.0 UJ	
N-Propylbenzene µg/L 80 230 ID 2.0 UJ	
2-Fhenylbutane (sec-Butylbenzene) µg/L 80 230 ID 20 UJ	
Styrene µg/L 100 100 80 0.50 U} 0.50 U] 0.50 U] 0.50 U] 0.50 UJ 0.50 UJ	
tert-Butylbenzene µg/L 80 230 ID 2.0 UJ	
1,1.2,2-Tetrachloroethane µg/L 8.5 35 78 0.50 U] 0.50 U] 0.50 U] 0.50 U] 0.50 U]	
1.1.1,2-Tetrachloroethane µg/L 77 320 ID 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ	
Tetrachbroethene µg/L 5 5 60 0.50 U] 0.50 U] 0.50 U] 0.50 U] 0.50 U] 0.50 U]	
Toluene µg/L 790 790 270 0.50 UJ	
1.2.4-Trichlorobenzene $\mu g/L$ 70 70 99 2.0 U)	
1,2,3-Trichlorobenzene µg/L 2,0 UJ	
1.1.1-Truchleroethane µg/L 200 200 89 0.50 U} 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ	
1.1.2-Trichloroethane µg/L 5 5 330 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ	
Trichloroethene μg/L 5 5 200 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ	
Trichlorottuoromethane (CFC-11) μg/L 2600 7300 - 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ	
1,2,3-Trichloropropane µg/L 42 120 - 0.50 U] 0.50 U] 0.50 U] 0.50 U] 0.50 U]	
1,2,4-Trimethylbenzene µg/1 63 63 17 2,0 UJ 2,0 UJ 2,0 UJ 2,0 UJ 2,0 UJ 2,0 UJ	
1,3,5-Trunethylbenzene µg/L 72 72 45 2.0 U) 2.0 UJ 2.0 UJ 2.0 UJ 2.0 UJ 2.0 UJ	
Vinyl chloride μg/L 2 2 13 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ	
ο-Xylene μg/L 280 280 41 0.50 Uj 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ	
$m\&p-\lambda y$ lenes $\mu g/L$ 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ 0.50 UJ	
Field Parameters	
Conductivity, field mS/cm 0.67 0.67 0.67 0.676 0.699 0.595 0.595	
Dissolved oxygen (DO), field mg/L 4.07 4.07 382 0.58 0.76 0.76	
Oxidation reduction potential (ORP), field millivolts 84 84 91 154 139 139	
pH_field	
Temperature, field Deg C	
Turbidity field NTU 6.33 6.33 56.9 46.9 14.4 14.4	

CRA 056393Memo 11-Tables

TABLE 2

Sample Location Sample Identification Sample Date Sample Elevation (feet AMSL) Screen Depth (feet bgs) Sample Type	Groun Units	ulwater Cl. a	eamp Crit	eria (1)	MW-103D GW-56393-040711-EV-014 47/2011 674.37 - 639.37 30-35	MW-1048 GW-56393-040711-EV-012 4/7/2011 684.86 - 658.86 20-25	MW-104D GW-56393-040711-EV-013 47/2011 663.48 - 618.48 40-45	MW-105S GW-56393-040711-EV-010 4/7/2011 699.89 - 687.89 5-12	MW-105D GW-56393-040711-EV-011 4/7/2011 662.79 - 615.79 42-47	MW-1068 GW-56393-040711-EV-008 4/7/2011 701.89 - 692.89 2-9
Metals										
Aluminum	րg/L	50	50	-	10.5	97.4ªF	184	33 1	7.6	27.8
Antimony	μg/L	6	6	130	0.05 U	0 05 U	0 07 U	0 05 U	0 05 U	0.11 U
Arsenic	µg/L	10	10	10	0.50 U	0.43 J	0.28	0.25 J	0 50 U	15.3 °h
Barium	μg/L	2000	2000	1400	67.3	73.4	79.1	146	74 4	538
Beryllium	μg/L	4	4	41	0 020 U	0.005 J	0.020 U	0.020 U	0 020 ∪	0 003 J
Cadmium	μg/L	5	5	5.1	0.011 J	0.010 j	0.017 J	0 013 J	0.005 }	0.009 J
Chromium	μg/L	100	100	11	0.29 U	0.35 U	0.60	0.24 U	0.22 U	0.40
Cobalt	μg/L	40	100	100	0.117	0.302	0.293	0.608	0.126	ı) 760
Copper	μg/L	1000	1000	23	0 62	0.92	0.76	0.76	0.92	1.68
lron	μg/L	300	300	-	19.6)	474 J ^{ah}	34.41	419 Jah	16.8 }	20800 J ^{ah}
Lead	μg/L	4	4	34	0.032	0.323	0.080	0111	0.070	9.330
Magnesium	μg/L	400000	1100000	-	25300	25500	25600	31800	26000	37000
Manganese	ug/L	50	50	5200	5.05	13.5	83.7 ⁴⁸	20846	2.12	483 ^{4b}
Mercury	μg/L	2	2	0.0013	0.20 U	0.20 U	0.20 ∪	0.20 ∪	0.20 Ù	0.20 U
Nickel	μg/L	100	100	130	1.15	1 24	1.43	1.92	0.98	1 87
Selenium	μg/L	50	50	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Silver	μg/L	34	98	02	0 020 U	0.020 U	0 020 U	0.020 Li	0.020 ∪	0 020 U
Sodium	μg/L	120000	350000	-	22400	24800	24900	25000	21900	21500
Thallium	μg/L	2	2	3.7	0 020 U	0.020 U	0.020 ∪	0.020 U	0.020 ∪	0.020 U
Vanadium	μg/L	4.5	62	12	0.18 J	0.48	0.25	0.181	0.14 }	0.29
Zinc	μg/L	2400	5000	310	1.52	1 50	2.48	0 92	1.23	4.82
PCBs										
Arciclor-1016 (PCB-1016)	μg/L	-	-	-	0.020 UJ	0.020 UJ	0 020 UJ	0.020 ∪J	0.020 UJ	0 020 UJ
Aroclor-1221 (PCB-1221)	µg/L	-	-	-	0.040 UJ	0.040 UJ	0.040 L'J	0 040 U)	0.040 UJ	0 040 UI
Aroclor-1232 (PCB-1232)	μg/L	-	-	-	0.020 UJ	0.020 ∪[0.020 UJ	0.020 UJ	0.020 ∪1	0.020 UJ
Aruclor-1242 (PCB-1242)	μg/L	-	-	-	0.020 U)	0.020 UJ	0.020 UJ	0.020 UJ	0.020 UJ	0.020 UJ
Aroclor-1248 (PCB-1248)	ug/L	-	-	-	0.020 UJ	0.020 UJ	0.020 UJ	0 020 UJ	0.020 ∪}	0.020 UJ
Aroclor-1254 (PCB-1254)	µg/L	-	-	-	0.020 UJ	0.020 UJ	0.020 UJ	0 020 UJ	0.020 ∪	0 020 UJ
Aroclor-1260 (PCB-1260)	μg/L	-	-	-	0 020 UJ	0 020 UI	0.020 UI	0.020 UJ	0.020 UJ	0.020 UJ
Total PCBs	μg/l,	0.5	0.5	0.2	ND	ND	ND	ND	ND	ND

it BA 056,993Memo-11-Tables

SUMMARY OF APRIL 2010 FOLLOW-UP GROUNDWATER ANALYTICAL RESULTS 12th STREET LANDFILL OTSEGO TOWNSHIP, MICHIGAN

Sample Location Sample Identification Sample Date Sample Elevation (feet AMSL)					MW-103D GW-56393-040711-EV-014 4/7/2011 674.37 - 639.37 30-35	MW-104S GW-56393-040711-EV-012 4/7/2011 684.86 - 658.86 20-25	MW-104D GW-56393-040711-EV-013 4/7/2011 663.48 - 618.48 40-45	MW-1055 GW-56393-040711-EV-010 4/7/2011 699.89 - 687.89 5-12	MW-105D GW-56393-040711-EV-011 4/7/2011 662.79 - 615.79 42-47	MW-1065 GW-56393-040711-EV-008 4/7/2011 701.89 - 692.89 2-9
Screen Depth (feet bgs)	C	dan stan Cl	eanup Crit	ania (I)	30-33	20-23	40-43	3-12	14-1/	2-7
Sample Type	Units	awnter Cit	b	с с	•					
	umes	и	υ	·						
Volatile Organic Compounds										
Acetone	μg/L	730	2100	1700	R	R	R	R	R	R
Benzene	μg/L	5	5	200	0.50 ∪	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Bromolynzene	μg/L	18	50	-	2.0 UJ	2.0 UJ	20 UJ	2 0 UJ	2.0 UJ	2.0 UJ
Bromodichloromethane	μg/L	80	80	ID	0 50 UJ	0.50 UJ	0.45	0.50 U)	0.50 UJ	0 50 U)
Bromoform	μg/L	80	80	ID	0.50 UJ	0.50 UJ	0.50 U/I	0.50 U)	0.50 Lij	0.50 UJ
Bromomethane (Methyl bromide)	μg/L	10	29	35	0 50 UJ	0.50 LIJ	0.50 UJ	0.50 UJ	0.50 UJ	0 50 UJ
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	13000	38000	2200	R	R	R	R	R	R
N-Butylhenzene	μg/L	80	230	ID	2 0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 Uł
Carbon disultide	μg/L	800	2300	1D	0.50 UJ	0.50 U)	0.50 LIJ	0.50 Li]	0.50 U J	0.50 U)
Carbon tetrachloride	μg/L	5	5	45	0.50 UJ	0.50 UJ	0 50 UI	0.50 UJ	0.50 UJ	0.50 ป]
Chlorobenzene	μg/L	100	100	25	0.50 UJ	0.50 U]	0.50 ป]	0 50 U j	0.50 UI	0.50 UI
Chiorobromomethane	μg/L	-	-	-	0.50 U.	0.50 U (0 50 U]	0.50 U}	0.50 UJ	0 50 U)
Chloroethane	μg/L	430	1700	1100	0.50 U)	0.50 U)	0.50 UI	0 50 UJ	0 50 UI	0.50 년
Chloroform (Trichloromethane)	μg/L	80	80	350	0.50 ບາ	0.50 UJ	0.58	0.50 U)	0.090]	0.50 UJ
Chloromethane (Methyl chloride)	μg/L	260	1100	ID	0.12 J	0.50 UJ	0.29 [0.50 UI	0 50 U)	0.50 LJ
2-Chiorotoluene	μg/L	150	420	ID	2.0 UJ	2 0 U)	2.0 UJ	2.0 UI	2.0 UJ	2.0 UJ
4-Chlorotoluene	µg/L	-	-		2.0 UI	2.0 UI	2.0 UI	2.0 UJ	2.0 U[2.0 U
Cymene (p-IsopropyItoluene)	μg/L	-	-	-	2.0 UJ	2.0 UJ	2.0 UJ	2 0 UJ	2.0 UI	2.0 UI
1,2-Dibromo-3-chloropropane (DBCP)	µg/L	0.2	0.2	-	2.0 U)	2.0 ບັງ	2.0 U)	2.0 UJ	2.0 UJ	2.0 U)
Dibromo-hloromethane	µg/L	80	80	ID	0 50 บา	0.50 ÚJ	0.38 J	0.50 ปไ	0.50 U)	0.50 UJ
1,2-Dibromoethane (Ethylene dibromide)	μg/L	0.05	0.05	5.7	2 0 Uj	2 0 UJ	2 0 UI	2 0 UI	2.0 UJ	2.0 UI
Dibromomethane	μg/L	80	230	-	0.50 UJ	0.50 ÚJ	0.50 UJ	0.50 UI	0.50 UJ	0.50 U)
1,2-Dichlorobenzene	μg/Ł	600	600	13	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UI	0.50 UI	0.50 UJ
1,3-Dichlorobenzene	μg/L	6.6	19	28	0 50 U)	0 50 U)	0.50 UI	0.50 UJ	0.50 UJ	0.50 UJ
1,4-Dichlorobenzene	. ς,, μg/L	75	75	17	0.50 U)	0.50 UJ	0.50 U)	0.50 U)	0.50 UJ	
Dichlorodifluoromethane (CFC-12)	μg/L	1700	4800	ID	0.50 UJ	0.50 UJ	0 50 UJ	0.50 UJ	,	0.50 UJ
1.1-Dichloroethane	μg/L	880	2500	740	0.50 UI	0.50 UJ	0 50 U J	•	0.50 Lij	0.50 UJ
1.2-Dichloroethane	μg/L	5	5	360	0.50 U)	0.50 U)	,	0.50 UJ	0.50 U]	0.50 ひ)
1.1-Dichloroethene	μg/L	7	7	130	0.50 UJ	0.50 U1	0.50 UJ	0.50 UJ	0.50 ∪∫	0.50 UJ
cis-1,2-Dichloroethene	μg/L μg/L	70	70	620	0.50 UJ	0.50 UJ	0 50 U)	0.50 U[0 50 LIJ	0.50 UI
trans-1,2-Dichloroethene	μg/L	100	100	1500	0 50 U)	0 50 U)	0.50 UJ	0.50 UJ	0 50 UJ	0.50 UJ
1.3-Dichloropropane	μg/ L μg/ l.	-	-	1500	0.50 UJ		0.50 UJ	0.50 U)	0.50 UJ	0.50 UI
1.2-Dichloropropane	μg/L μg/L	5	5	230	0.50 UI	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	ช.50 ป)
2,2-Dichloropropane	μg/ L μg/ L	-	-	230	0.50 U) 0.50 U)	0.50 ป]	0.50 UJ	0.50 UJ	0 50 ∪}	0 50 UJ
1,1-Dichloropropene	μg/ L	-	-	•	•	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0 50 UJ
cis-1,3-Dichloropropene		-	-		0 50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 ปฏ	0.50 UJ
112 O Commission of the	μg/L	-	-	-	0.50 U)	0 50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ

CRA 056303Afemo-11 Tables

TABLE 2

Sample Location Sample Identification					MW-103D GW-56393-040711-EV-014	MW-104S GW-56393-040711-EV-012	MW-104D GW-56393-040711-EV-013	MW-105S GW-56393-040711-EV-010	MW-105D GW-56393-040711-EV-011	MW-106S GW-56393-040711-EV-008
Sample Date					4/7/2011	4/7/2011	4/7/2011	4/7/2011	4/7/2011	4/7/2011
Sample Elevation (feet AMSL)					674.37 - 639.37	684.86 - 658.86	663.48 - 618.48	699.89 - 687.89	662.79 - 615.79	701.89 - 692.89
Screen Depth (feet bgs)					30-35	20-25	40-45	5-12	42-47	2-9
Sample Type	Grow	ıdıvater C	leanup Crit	eria ⁽¹⁾						
	Units	а	b	с	•					
trans-1,3-Dichloropropene	μg/L	-		-	0 50 UJ	0 50 UJ	0.50 U j	0.50 UJ	0.50 U)	0 50 บา
Ethylbenzene	μg/L	74	74	18	0.50 UJ	0.50 UJ	0.50 U(0 50 CJ	0 50 U (0.50 UJ
Hexachlorobutadiene	μg/L	15	42	0.053	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UI	2.0 UI	2.0 U
2-Hexanone	μg/L	1000	2900	1D	20 UJ	20 UJ	20 UI	20 UI	20 UJ	20 ∪]
Isopropyl benzene	μg/L	800	2300	28	2.0 UJ	2.0 UJ	2.0 L'J	2 0 UI	2.0 Uj	2.0 UJ
4-Methyl-2-pentanone(MIBK)	jig/L	1800	5200	IĎ	R	R	R	7	R	R
Methylene chloride	μg/L	5	5	1500	2.0 UJ	2.0 UJ	2.0 UJ	2 0 UJ	2.0 UJ	2.0 U)
Naphthalene	μg/L	520	1500	11	2.0 UJ	2.0 U)	2.0 U]	2.0 UI	2.0 U	2.0 U}
N-Propylbenzene	μg/L	80	230	ID	2.0 UJ	2.0 UJ	2.0 UJ	2 0 UI	2 0 U)	2.0 UJ
2-Phenylbutane (sec-Butylbenzene)	μg/L	80	230	ID	2 0 UI	20 Uj	2.0 UJ	2.0 UJ	2 0 UI	2.0 U)
Styrene	μg/L	100	100	80	0.50 UJ	0.50 UJ	0 50 UJ	0 50 U J	0.50 L'J	0.50 UJ
tert-Butylbenzene	μg/L	80	230	ID	2 0 U[20 UI	2.0 UJ	2.0 UI	2.0 UJ	2.0 UJ
1,1,2,2-Tetrachloroethane	μg/L	8.5	35	78	0.50 UJ	0.50 UJ	0 50 UJ	0.50 U)	0.50 UI	0.50 UI
1,1,1,2-Tetrachloroethane	μg/L	77	320	ID	0.50 UJ	0.50 UJ	0.50 UT	0.50 UJ	0 50 U[C 50 UJ
Tetrachloroethene	μg/L	5	5	60	0.50 UJ					
Tol sene	μg/L	790	790	270	0.50 UI	0.060 [0.060 [0.50 U[0 50 UJ	0.090 (
1,2,4-Trichlorobenzene	μg/L	70	70	99	2.0 UJ	2.0 UJ	2.0 UI	2.0 UJ	2.0 ∪1	2.0 UJ
1,2,3-Trichlorobenzene	иg/L		-	-	2 0 UI	2.0 UJ	20 UJ	2.0 U]	2 0 UJ	2.0 U)
1,1,1-Trichloroethane	μg/L	200	200	89	0.50 U)	0.50 ÚI	0.50 UI	0.50 UJ	0.50 UJ	0.50 UI
1,1.2-Trichloroethane	μg/L	5	5	330	0.50 UJ	0.50 UJ	0 50 UJ	0.50 UI	0.50 UJ	0.50 U)
Trichloroethene	μg/L	5	5	200	0 50 U)	0.50 UJ	0.50 U)	0.50 UJ	0.50 U)	0.50 UJ
Trichlorofluoromethane (CFC-11)	μg/L	2600	7300	-	0.50 UJ	0.50 L/J	0.50 U/	0.50 U!	0.50 U)	0.50 UJ
1,2,3-Trichloropropane	μg/L	42	120	-	0.50 U[0 50 UI	0.50 L'J	0.50 UJ	0.50 UJ	0.50 U)
1,2,4-Trimethy/benzene	μg/L	63	63	17	2.0 UI	2.0 UI	2.0 UI	2 0 UJ	20 UJ	2.0 UJ
1,3,5-Trimethylbenzene	μg/L	72	72	45	2.0 UI	20 U	2 0 U!	2.0 UI	2.0 UJ	2001
Vinvl chloride	μg/L	2	2	13	0.50 ÚI	0.50 UI	0.50 UI	0.50 UJ	0.50 UJ	0.50 U)
o-λylene	μg/l.	280	280	41	0.50 UJ	0.50 UJ	0 50 U[0.50 UJ	0.50 U)	0.50 UJ
m&p-Xylenes	μg/L	-	-		0 50 บไ	0.50 U)	0 S0 U]	0.50 UJ	0.50 UJ	0.50 UJ
Field Parameters										
Conductivity, field	mS/cm				0.626	0.64	0.648	0.813	0 656	1.171
Dissolved oxygen (DO), field	mg/L	-	-	-	1.33	1 17	0.96	0 23	2.32	1.171
Oxidation reduction potential (ORP), field	millivolts	_	_		40	13	40	-12	9	0.2
ph, field	s u.		6.5 - 8.5	-	8.22	8.17	8.18	7 94		0.84
Temperature, field	Deg C	-	-	_	10 68	10.88	10.39	7 94 9 75	8.14	7 75
Turbidity, field	NTU	_	_	_	2.94	5	20.5		11.34	8.25
	.,,,	-	-		4.77	J	20.5	7.99	4.16	15.6

- RA 056393Memo-11-Tables

SUMMARY OF APRIL 2010 FOLLOW-UP GROUNDWATER ANALYTICAL RESULTS 12th STREET LANDFILL OTSEGO TOWNSHIP, MICHIGAN

Sample Location Sample Identification Sample Date Sample Elevation (feet AMSL) Screen Depth (feet ligs) Sample Type	Groun Units	idwater Cl a	eanup Crite b	rria ⁽ⁿ⁾	MW-106D GW-56393-040711-EV-009 4/7/2011 664.66 - 620.66 40-45	MW-107S GW-56393-040711-EV-007 4/7/2011 695.76 - 682.76 8-13	MW-108S GW-56393-040711-EV-005 4/7/2011 701.32 - 692.32 2-9	MW-108D GW-56393-040711-EV-006 4/7/2011 663.39 - 618.39 40-45	MW-109D GW-56393-040611-EV-004 4/4/2011 689.41 - 666.41 22-27
Metals									
Aluminum	ug/L	50	50	-	6.3	5 2	74.0 ^{4h}	28.8	10.7
Antimony	μg/L	6	6	130	0.18	0.06 U	0.07 U	0.08 U	0.03 J
Arseruc	μg/L	10	10	10	0.09 J	0 48 J	0.30 j	0.52	0.16 J
Barium	μg/L	2000	2000	1400	95.9	86 1	78.7	331	74.8
Beryllium	μg/L	4	4	41	0.020 U	0.020 LI	1 800.0	0.004 [0.020 U
Cadmium	μg/L	5	5	5.1	0.012 j	0.111	0.010]	0.018 J	0 008 [
Chromium	μg/L	100	100	11	0.50	0.22 LI	0.46	0.20 U	0.43
Cobalt	μg/L	40	100	100	0.138	0 344	0.238	0.553	0.136
Copper	μg/L	1000	1000	23	0.95	1.37	1.60	1,59	1.33
Iron	μg/L	300	300	-	14,9 [830 J ²⁵	7 275 (240 j	31.7
Lead	μg/L	4	4	34	0.059	0.058	0.263	0.275	0.079
Magnesium	μg/L	400000	1100000		24700	30700	23300	31900	24300
Manganese	μg/L	50	50	5200	36.4	268 ^{ah}	24.3	201 ^{4h}	2.16
Mercury	μg/L	2	2	0.0013	0 20 U	0.20 ∪	0.20 U	0.20 U	0.20 U
Nickel	μg/L	100	100	130	1.40	3.91	1 33	2.13	1.17
Selenium	μg/L	50	50	5	1.0 U	1.0 U	1.0 U	1.0 U	0.4 }
Silver	μg/L	34	98	0.2	0.020 U	0.020 U	0.020 U	0.020 U	0.020 ∪
Sodium	μg/L	120000	350000	-	30000	21900	20600	54300	21300
Thallium	μg/L	2	2	3.7	0.026	0.213	0.020 U	0.098	0.006 (
Vanadium	μg/L	4.5	62	12	0.13 [0.09 J	0.30	0.19 J	0.15 [
Zinc	μg/L	2400	5000	310	1.62	4.20	2 90	3.28	1.56
PCBs									
Aroclor-1016 (PCB-1016)	μg/L	-	-	-	0 020 UJ	0.0 2 0 U}	0 0 2 0 ل	0.020 UJ	0.020 UJ
Aroclor-1221 (PCB-1221)	μg/L	-		-	0.040 UJ	0.040 UJ	0.040 U}	0.040 UI	0.040 UJ
Aroclor-1232 (PCB-1232)	ug/L		-	-	0.020 UI	0 020 UJ	0.020 UJ	0.020 UJ	0.020 U)
Aroclor-1242 (ICB-1242)	μg/L	-	-	-	0.020 UJ	0.020 UJ	0.020 UJ	0.020 UJ	0.020 UI
Aroclor-1248 (PCB-1248)	μg/L	-	-	-	0 020 UJ	0.020 니)	0 020 UJ	0 020 U)	0.020 UJ
Aroclor-1254 (FCB-1254)	µg/L	-	-	-	0 0083 J	0.020 U]	0.0056	0 020 U	0.020 U)
Arocior-1260 (PCB-1260)	μg/L	-	-	-	0 020 UJ	0 020 U)	0.020 むj	0.020 UJ	0.020 UJ
Total PCBs	μg/L	0.5	0.5	0.2	0.0083 J	ND	0.0056 J	ND	ND

TABLE 2

Sample Location Sample Identification Sample Date Sample Elevation (feet AMSL) Screen Depth (feet bgs) Sample Type	Groun Units	dwater Cl a	eanup Crit b	eria ⁽¹⁾	MW-106D GW-56393-040711-EV-009 4/7/2011 664.66 - 620.66 40-45	MW-1075 GW-56393-040711-EV-007 4/7/2011 695.76 - 682.76 8-13	MW-1085 GW-56393-040711-EV-005 4/7/2011 701.32 - 692.32 2-9	MW-108D GW-56393-040711-EV-006 4/7/2011 663.39 - 618.39 40-45	MW-109D GW-56393-040611-EV-004 4/5/2011 689.41 - 666.41 22-27
	Cimit.		·	٠					
Volatile Organic Compounds									
Acetone	μg/L	730	2100	1700	R	R	R	R	R
Benzene	µg/L	5	5	200	050 U	0 50 U	0.50 U	0.50 U	0.50 L'J
Bromobenzene	μg/L	18	50	-	2.0 UJ	2 0 UJ	2 0 UJ	2 0 U J	2.0 UJ
Bromodichloromethane	μg/L	80	80	1D	0.50 UJ	0.50 UT	0 50 UT	0.50 UJ	0.50 UJ
Bro:noform	μg/L	80	80	ID	0.50 UJ	0 50 UJ	0.50 UJ	0.30 UJ	0.50 UJ
Bromomethane (Methyl bromide)	μg/L	10	29	35	0 50 UJ	0.50 UT	0.50 UJ	0.50 UJ	0.50 UJ
2-Butanone (Methyl ethyl ketone) (MEK)	μg/1,	13000	38000	2200	R	R	R	R	R
N-Butylbenzene	μg/l.	80	230	ID	2.0 UI	2.0 U)	2.0 UJ	2.0 UJ	2.0 UJ
Carbon disulfide	μg/L	800	2300	ſD	0.50 UJ	0.50 UJ	0.50 U J	0 50 UJ	0.50 じ!
Carpon tetrachloride	μg/L	5	5	45	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U	0.50 ∪ J
Chlorobenzene	μg/L	100	100	25	0.50 UJ	0 50 UJ	0.50 U1	0.50 UJ	0 50 ∪1
Chlorobromomethane	μg/L	-	-	-	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U)	0.50 LI}
Chloroethane	μg/l	430	1700	1100	0.50 UJ	0.50 し}	0.50 じ)	0.50 UJ	0.50 UJ
Chioroform (Trichloromethane)	μg/L	80	80	350	0.50 ป)	0.50 UJ	0.50 UJ	0.50 나)	0.50 UJ
Chloromethane (Methyl chloride)	μg/L	260	1100	ID	0.10]	0.50 U]	0 50 UJ	0.50 U)	0.50 U]
2-Chlorotoluene	μg/L	150	420	ID	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2 0 U)
4-Chlorotoluene	ug/L	-	-		2.0 UJ	2.0 U)	2 0 U)	2 0 U J	2.0 U)
Cymene (p-Isopropylto:uene)	μg/L	-	-	-	2.0 UJ	2.0 UJ	2 0 UJ	2.0 UJ	2.0 UI
1,2-Dibromo-3-chloropropane (DBCP)	µg/L	0.2	0.2	-	2 0 UJ	2.0 UI	2.0 ∪∫	2.0 UJ	R
Dibromochloromethane	μg/L	80	80	ID	0.50 UJ	0.50 U[0 50 UJ	0.50 UT	0.50 ∪}
1,2-Dibromoethane (Ethylene dibromide)	μg/L	0.05	0.05	5.7	20 UJ	2 0 UI	2.0 UJ	2.0 UJ	2.0 UJ
Dibromomethane	μg/L	80	230	-	0.50 UJ	0.50 UI	0.50 UJ	0.50 U)	0.50 ÚJ
1,2-Dichlorobenzene	μg/L	600	600	13	0.50 UJ	0.50 U/	0.50 UJ	0.50 UJ	0 50 UJ
1,3-Dichlorobenzene	µg/L	6.6	19	28	0 50 U(0.50 UJ	0.50 UI	0.50 UJ	0.50 UJ
1,4-Dichlorobenzene	μg/L	75	75	17	0.50 UJ	0.50 U]	0.50 UJ	0.50 UI	0.50 UJ
Dichlorodifluoromethane (CFC-12)	μg/L	1700	4800	ID	0.50 UJ	0.50 UJ	0.50 UI	0.50 UJ	0.50 UI
1,1-Dichloroethane	ug/L	880	2500	740	0.50 UJ	0.50 UJ	0.50 U/	0.14 /	0.50 UI
1,2-Dichloroethane	μg/L	5	5	360	0.50 UJ	0.50 ∪]	0.50 U)	0.50 UJ	0.50 UI
1,1-Dichloroethene	μg/L	7	7	130	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UI
cis-1,2-Dichloroethene	μg/L	70	70	620	0.50 UJ	0 50 U	0.50 UI	0.50 U)	0.50 UJ
trans-1,2-Dichloroethene	μg/L	100	100	1500	0.50 UI	0.50 U	0.50 U)	0.50 UJ	0.50 U)
1.3-Dichloropropane	μg/L		-		0.50 UJ	0.50 U	0.50 U)	0.50 U/	0.50 U)
1,2-Dichloropropane	μg/L	5	5	230	0.50 UJ	0.50 U	0.50 UJ	0.50 UI	0.50 U)
2,2-Dichloropropane	μg/L		-	-	0.50 UI	0.50 U	0.50 U)	0.50 UI	0.50 UI
1,1-Dichloropropene	μg/L	-		-	0.50 ป]	0.50 UJ	0.50 ∪1	0.50 UJ	
cis-1,3-Dichloropropene	μg/L	-	_	_	0.50 U]	0.50 UI	0.50 ป]	0.50 U)	0.50 U 0.50 U
• •					0.00 0 j	0.50 01	0.50 01	0.50 Oj	O'SO CA

, RA 056393Memo-11-Tables

SUMMARY OF APRIL 2010 FOLLOW-UP GROUNDWATER ANALYTICAL RESULTS 12th STREET LANDFILL OTSEGO TOWNSHIP, MICHIGAN

Sample Location Sample Identification Sample Date Sample Elevation (feet AMSL) Screen Depth (feet bgs) Sample Type		idivater CI a	eanup Crit b		MW-106D GW-56393-040711-EV-009 4/7/2011 664.66 - 620.66 40-45	MW-1075 GW-56393-040711-EV-007 4/7/2011 695.76 - 682.76 8-13	MW-108S GW-56393-040711-EV-005 4/7/2011 701.32 - 692.32 2-9	MW-108D GW-56393-040711-EV-006 4/7/2011 663.39 - 618.39 40-45	MW-109D GW-56393-040611-EV-004 4/4/2011 689.41 - 666.41 22-27
	Units	а	v	c					
trans-1,3-Dichloropropene	μg/L		-	-	0.50 U)	0.50 ป)	0.50 U)	0.50 U)	0 50 U)
Ethylbenzene	μg/L	74	74	18	0.50 UJ	0.50 U)	0.50 UJ	0 50 UJ	0.50 UJ
Hexachlorobutadiene	μg/L	15	42	0.053	2.0 ∪[2.0 U)	2.0 UJ	2.0 UJ	2 0 UJ
2-Hexanone	μg/L	1000	2900	W	20 UJ	20 U (20 UJ	20 UJ	R
Isopropyl benzene	μg/L	800	2300	28	20 UJ	2.0 UJ	20 UJ	2.0 UJ	2.0 UJ
4-Methyl-2-pentanone(MIBK)	µg/L	1800	5200	ID	R	R	R	R	R
Methylene chloride	μg/L	5	5	1500	2.0 U[2.0 UJ	2 0 U J	2.0 UI	2.0 UJ
Naphthalene	μg/L	520	1500	11	2.0 UJ	2.0 ∪[2.0 UJ	2.0 UJ	2.0 UJ
N-Propylbenzene	µg/L	80	230	מו	2.0 UJ	2.0 U)	2.0 U)	2.0 Uj	2.0 Uj
2-Phenylbutane (sec-Butylbenzene)	μg/L	80	230	ID	2.0 UJ	2.0 UI	2 0 UI	2.0 LIJ	2.0 UJ
Styrene	μg/L	100	100	80	0.50 UJ	0.50 UI	0.50 U]	0.50 UJ	0.50 UJ
tert-Butylbenzene	μg/L	80	230	ID	2 0 UI	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ
1.1.2.2-Tetrachloroethane	μg/L	8.5	35	78	0.50 UI	0.50 ÚJ	0.50 U}	0.50 UJ	0.50 UJ
1,1,1,2-Tetrachloroethane	μg/L	77	320	ID	0.50 U[0.50 じ)	0.50 ป)	0 50 UJ	0.50 UJ
Tetrachloroethene	μg/L	5	5	60	0.50 U)	0.50 UJ	0.50 U)	0.50 UI	0.50 UJ
Toluene	μg/L	790	790	270	0 060 1	0.50 UJ	0.50 UJ	0.070)	0.50 UJ
1,2,4-Trichlarobenzene	. g, μg/L	70	70	99	2.0 UI	2.0 UJ	20 UI	2.0 U)	2.0 U)
1,2,3-Trichlorobenzene	μg/L	_	-	_	2 0 UJ	2.0 ∪[2.0 UJ	2.0 UI	انا 2.0
1,1,1-Trichlorcethane	μg/L	200	200	89	0.50 UJ	0 50 U/	0.50 UI	0.50 U/	0.50 ÚJ
1.1.2-Trichloroethane	μg/L	5	5	330	0.50 UJ	0.50 UI	0 50 U [0.50 UI	0.50 UJ
Trichloroethene	μg/L	5	5	200	0.50 U]	0.50 UI	0.50 ປ)	0 50 UJ	0.50 U]
Trichlorofluoromethane (CFC-11)	µg/L	2600	7300	-	0.50 U)	9 50 UI	0.50 ป]	0.50 U)	0.50 UI
1,2,3-Trichloropropane	μg/L	42	120	-	0.50 UJ	0 50 U)	0.50 Lij	0.50 UJ	0.50 UJ
1,2,4-Trimethy Ibenzene	μg/L	63	63	17	2 0 Uj	2.0 UI	2 0 UJ	2.0 UJ	2.0 UJ
1,3,5-Trimethylbenzone	μg/L	72	72	45	2.0 UJ	2.0 UI	2.0 UI	20 U)	2 0 UI
Vinyl chloride	μg/L	2	2	13	0.50 UJ	0 50 UJ	0.50 ป]	0 50 UI	0.50 UJ
o-Xylene	μg/L	280	280	41	0.50 UJ	0.50 U)	0.50 UJ	0.50 UJ	0.50 UJ
m&p-Xylenes	μg/L			-	0 50 UI	0.50 LÍJ	0.50 U)	0.50 UJ	0.50 UJ
Field Parameters									
Conductivity, field	mS/cm	-	-	_		0.806	0 642	0.905	0.662
Dissolved oxygen (DO), field	mg/L	-	-	-		0 22	2.68	0.3	3.18
Oxidation reduction potential (ORP), field	millivolts	-	-	-		0.32	98	92	92
pH, field	s u.	ъ5-85	65-8.5	-		8.04	8.27	8.1	8.15
Temperature, field	Deg C	-	-	-		9.77	9.96	10 54	10.36
Turbidity, field	NTU	-	-	-		3.79	13.7	10.3	3 27
					÷*			e vog	J. 41

CPA 056393Memo-11-Tables

SUMMARY OF APRIL 2010 FOLLOW-UP GROUNDWATER ANALYTICAL RESULTS 12th STREET LANDFILL OTSEGO TOWNSHIP, MICHIGAN

MW-101D Sample Location MW-1015 MW-1015 Sample Identification GW-56393-040611-EV-002 GW-56393-040611-EV-003 GW-56393-040611-EV-001 Sample Date 4/ty/2011 4/6/2011 4/4/2011 Sample Elevation (feet AMSL) 702.35 - 663.35 702.35 - 663.35 664.33 - 589.33 Screen Depth (feet bgs) 32-39 70-75 32-39 Sample Type Groundwater Cleanup Criteria (1) Duplicate Umts

Notes:

Michigan Act 451, Part 231 Cleanup Criteria and Part 213 Risk-based Screening Levels: Residential and Non-Residential Generic Cleanup Criteria (1)

- (1) Cleanup criteria identified by MDEQ RRD Op Memo No. 1, updated 3/25/2011, pursuant to 1994 PA 451 as amended.
- a Residential drinking water criteria.
- b Non-Residential drinking water criteria.
- c Groundwater surface water interface
- U Not present at or above the associated value.
- J Estimated concentration.
- UJ Estimated reporting limit.
- R Rejected.

feet AMSL - feet above mean sea level

feet bgs - feet below ground surface

MW-1015 MW-101D MW-102S MW-1025 Sample Location: WG-56393-102511-IV-021 Sample Identification: WG-56393-102511-JV-019 WG-56393-102511-JV-018 WG-56393-102511-JV-020 Sample Date: 10/25/2011 10/25/2011 10/25/2011 10/25/2011 Sample Type: Groundwater Cleanup Criteria (1) Duplicate Units b Volatile Organic Compounds $\mu g/L$ 730 2100 1700 R R R R Acetone 0.50 U 0.50 U 0.50 U µg/L 5 200 0.50 U Benzene 5 80 80 ID 0.50 U 0.50 U 0.50 U 0.50 U Bromodichloromethane $\mu g/L$ Bromoform $\mu g/L$ 80 80 ID 0.50 U 0.50 U 0.50 U 0.50 U Bromomethane (Methyl bromide) µg/L 10 29 35 0.50 U 0.50 U 0.50 U 0.50 U 2-Butanone (Methyl ethyl ketone) (MEK) $\mu g/L$ 13000 38000 2200 R R R R Carbon disulfide µg/L 800 2300 ID 0.50 U 0.50 U 0.50 U 0.50 U Carbon tetrachloride μg/L 5 45 0.50 U 0.50 U 0.50 U 0.50 U 5 Chlorobenzene µg/L 100 100 25 0.50 U 0.50 U 0.50 U 0.50 U Chloroethane 430 1700 1100 0.50 U µg/L 0.50 U 0.50 U 0.50 U 80 Chloroform (Trichloromethane) µg/L 350 0.50 U 0.50 U 80 0.50 U 0.50 U Chloromethane (Methyl chloride) 260 µg/L 1100 ID 0.50 U 0.50 U 0.50 U 0.50 U 1,2-Dibromo-3-chloropropane (DBCF) $\mu g/L$ 0.2 0.2 R R R R 80 Dibromochloromethane µg/L 80 ID 0.50 U 0.50 U 0.50 U 0.50 U 1,2-Dibromoethane (Ethylene dibromide) 0.05 0.05 µg/L 5.7 2.0 U 2.0 U 2.0 U 2.0 U 1,2-Dichlorobenzene $\mu g/L$ 600 600 13 0.50 U 0.50 U 0.50 U 0.50 U 1,3-Dichlorobenzene µg/L 6.6 19 28 0.50 U 0.50 U 0.50 U 0.50 U 1.4-Dichlorobenzene $\mu g/L$ 75 75 17 0.50 U 0.50 U 0.50 U 0.50 U Dichlorodifluoromethane (CFC-12) 1700 µg/L 4800 ID 0.50 U 0.50 U 0.50 U 0.50 U 1,1-Dichloroethane $\mu g/L$ 880 2500 740 0.50 U 0.50 U 0.50 U 0.50 U 1,2-Dichloroethane $\mu \textbf{g}/L$ 5 5 360 0.50 U 0.50 U 0.50 U 0.50 U 1,1-Dichloroethene μg/L 7 7 130 0.50 U 0.50 U 0.50 U 0.50 U cis-1,2-Dichloroethene μg/L 70 70 620 0.50 U 0.50 U 0.50 U 0.50 U trans-1.2-Dichloroethene 100 100 µg/L 1500 0.50 U 0.50 U 0.50 U 0.50 U 1,2-Dichloropropane μg/L 5 5 230 0.50 U 0.50 U 0.50 U 0.50 U cis-1,3-Dichloropropene µg/L 0.50 U 0.50 U 0.50 U 0.50 LI trans-1,3-Dichloropropene μg/L 0.50 U 0.50 U 0.50 U 0.50 U Ethylbenzene $\mu g/L$ 74 74 18 0.50 U 0.50 U 0.50 U 0.50 U 2-Hexanone μg/L 1000 2900 ID R R R R Isopropyl benzene µg/L 800 2300 28 2.0 U 2.0 U 2.0 U 2.0 U Methyl tert butyl ether (MTBE) µg/L 40 40 7100 0.50 U 0.50 U 0.50 U 0.50 U 4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK) 1800 µg/L 5200 ID R R R R Methylene chloride $\mu g/L$ 5 5 1500 2.0 U 2.0 U 2.0 U 2.0 U Styrene µg/L 100 100 80 0.50 U 0.50 U 0.50 U 0.50 U 1,1,2,2-Tetrachloroethane μg/L 8.5 35 78 0.50 U 0.50 U 0.50 U 0.50 U Tetrachloroethene μg/L 5 5 60 0.50 U 0.50 U 0.50 U 0.50 U Toluene μg/L 790 790 270 0.50 U 0.50 U 0.50 U 0.50 U 1,2,4-Trichlorobenzene µg/L 70 70 99 2.0 U 2.0 U 2.0 U 2.0 U 1.1,1-Trichloroethane 200 µg/L 200 89 0.50 U 0.50 U 0.50 Li 0.50 U 1,1,2-Trichloroethane μg/L 5 5 330 0.50 U 0.50 U 0.50 U 0.50 U Trichleroethene µg/L 5 200 0.50 ป 0.50 U 0.50 U 0.50 U

⁻ RA d5n t0 \ Memc-12-This

Sample Location: Sample Identification: Sample Date: Sample Type:					MW-1015 WG-56393-102511-JV-019 11/25/2011	MW-101D WG-56393-102511-JV-018 10/25/2011	MW-1025 WG-56393-102511-JV-020 10/25/2011	MW-1025 WG-56393-102511-JV-021 10/25/2011
		Groundwater	Cleanup Crite	ria (1)				Duplicate
	Units	a	b	¢				
Trichlorofluoromethane (CFC-11)	μg/L	2600	7300	-	0.50 U	0.50 U	0.50 U	0.50 U
Vinyl chloride	μg/L	2	2	13	0.50 U	0.50 U	0.50 U	0.50 U
c-Xylene	μg/L	280	280	41	0.50 U	0.50 U	0.50 U	0.30 じ
m&p-Xylenes	μg/L				0.50 U	0.50 U	0.50 U	0.50 U
PCBs								
Aroclor-1016 (PCB-1016)	μg/L	-	-	-	0.020 U	0.020 U	0.020 U	0.020 U
Araclor-1221 (PCB-1221)	μg/L	-	-	-	0.040 U	0 040 U	0.040 U	0.040 U
Aroclor-1232 (PCB-1232)	μg/L	-	-	-	0.020 U	0.020 U	0.020 U	0.020 U
Arcclor-1242 (PCB-1242)	μg/L	-	-		0.020 U	0.020 U	0.020 U	0.020 U
Areclor-1248 (PCB-1248)	μg/L	-	-		0.020 U	0.020 U	0.020 U	0.020 U
Areclor-1254 (PCB-1254)	μg/L	-	-		0.020 U	0.020 U	0.020 U	0.020 U
Areclor-1260 (PCB-1260)	μg/L	-	-		0.020 U	0.020 U	0.020 ∪	0.020 U
Total PCBs	μg/L	0.5	0.5	0.2	ND	ND	ND	ND
Metals								
Magnesium	μg/L	400000	1100000	-	24200	23300	22800	23100
Mercury	μg/L	2	2	0.0013	0.001 U	0.00113 U	0.0012 U	0.00119 U
Sodium	μg/L	120000	350000	-	23800	23400	19200	20200
General Chemistry								
Cyanide (total)	μg/L	200	200	5.2	10 U	10 U	5 J	6 J°
Field Parameters								
Conductivity, field	mS/cm	-	-	_	.696	0.670	0.670	0.670
Dissolved oxygen (DO), tield	mg/L	-	_	-	3.58	6.15	0.16	0.16
Oxidation reduction potential (ORP), field	millivolts	_	_	-	-29,7	-32.4	-45.0	-45.0
pH, field	s.u.	6.5 - 8.5	6.5 - 8.5	_	7.01	7.36	7.16	7.16
Temperature, field	Deg C	-	-	_	16.19	13.25	18.11	18.11
Turbidity, field	NTU	-	-	-		21.1	31.9	31.9

Notes:

Michigan Act 451, Part 201 Cleanup Criteria and Part 213 Risk-based Screening Levels: Residential and Non-Residential Generic Cleanup Criteria (1).

 $^{^{(1)}}$ Cleanup criteria identified by MDEQ RRD Op Memo No. 1, updated 3/25/2011, pursuant to 1994 PA 451 as amended.

a - Residential drinking water criteria.

b - Non-residential drinking water criteria.

c - Groundwater surface water interface.

U - Not present at or above the associated value.

J - Laboratory qualifiers - estimated concentration.

Sample Location: Sample Identification: Sample Date: Sample Type:	MW-102D WG-56393-102511-JV-0 10/25/2011	MW-103D 122 WG-56393-102611-JV-023 10/26/2011	MW-104S WG-56393-102611-JV-025 10/26/2011	MW-104D WG-56393-102611-JV-024 10/26/2011	MW-1055 WG-56393-102611-JV-027 10/26/2011	MW-105D WG-56393-102611-JV-026 10/26/2011
	uits					
Volatile Organic Compounds						
	g/L R	R	R	R	R	R
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 じ	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 0.50 UJ	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L R	R	R	R	R	R
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 じ	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0,50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L R	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 2.0 U	2.0 U	2,0 U	2.0 U	2.0 U	2.0 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,4-Dichlorobenzene µ	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Dichlorodifluoromethane (CFC-12) μ	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L R	R	R	R	R	R
	g/L 2.0 U	2.0 ∪	2.0 U	2.0 U	2.0 U	2.0 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK) μ	g/L 20 U	20 U	20 U	20 U	20 U	20 U
Methylene chloride µ	g/L 2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
	z/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
and the second s	g/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	;/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	,/L 2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1,1-Trichloroethane μ	;/L 0.50 U	0.50 U	0.50 U	0.50 U	0.12 J	0.50 U
	,/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Trichloroethene µ _l	;/L 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U

Sample Location: Sample Identification: Sample Date: Sample Type:		MW-102D WG-56393-102511-JV-022 10/25/2011	MW-103D WG-56393-102611-JV-023 10/26/2011	MW-1045 WG-56393-102611-JV-025 10/26/2011	MW-104D WG-56393-102611-JV-024 10/26/2011	MW-1055 WG-56393-102611-JV-027 10/26/2011	MW-105D WG-56393-102611-JV-026 10/26/2011
	Units						
Trichlorofluoromethane (CFC-11)	μg/L	0.50 U					
Vinyl chloride	μg/L	0.50 U					
o-Xylene	μg/L	0.50 U					
m&p-Xylenes	μg/L	0.50 U					
PCBs							
Aroclor-1016 (PCB-1016)	μg/L	0.020 U	0.020 U	0.020 L'	0.020 LI	0.020 U	0.020 U
Aroclor-1221 (PCB-1221)	μg/L	0.040 U	0.039 U	0.040 U	0.040 U	0.040 U	0.040 U
Areclor-1232 (PCB-1232)	μg/L	0.020 L'	0.020 U	0.020 U	0.020 L*	0.020 U	0.020 U
Areclor-1242 (PCB-1242)	μg/L	0.020 U					
Aroclor-1248 (PCB-1248)	μg/L	0.020 U					
Aroclor-1254 (PCB-1254)	μg/L	0.020 U					
Areclor-1260 (PCB-1260)	μg/L	0.020 U	0.020 ∪	0.020 U	0.020 U	0.020 U	0.020 U
Total PCBs	μg/L	ND	ND	ND	ND	ND	ND
Metals							
Magnesium	μg/L	22700	20500	21700	22200	26700	23200
Mercury	μ g /L	0.001 U	0.001 U	0.001 U	0.001 U	0.001 L ¹	0.001 L'
Sodium	μg/L	19600	18400	20200	28000	22800	20500
General Chemistry							
Cyanide (total)	μ g /L	9 J°	9 J°] 10 บ	10 U	10 U	4]
Field Parameters				•			
Conductivity, field	mS/cm	0.407	0.540	0.410			
Dissolved oxygen (DO), field		0.607 1.88	0.549	0.610	0.621	0.732	0.629
Oxidation reduction potential (ORP), field	mg/L millivolts	1.88 -34.4	0,25	1.27	1.29	0.27	1.41
pH, field	s.u.	-34.4 7.30	27.2	-32.9	-26.1	-65.1	51.7
Temperature, field	Deg C	15.84	6.98	7.25	7.25	7.10	7.32
Turbidity, field	NTU	3.02	11.65	12.81	12.28	13.25	11.65
**************************************	IVIU	3.02	9.82	1.29	2.01	3.12	

Notes:

Michigan Act 451, Part 201 Cleanup Criveria and Part 213 Risk-based Scre-Non-Residential Generic Cleanup Criteria (1).

 $^{^{(1)}}$ Cleanup criteria identified by MDEQ RRD Op Memo No. 1, updated 3/451 as amended.

a - Residential drinking water criteria.

b - Non-residential drinking water criteria.

c - Groundwater surface water interface.

U - Not present at or above the associated value.

J - Laboratory qualifiers - estimated concentration.

Sample Location:		MW-106S	MW-106D	MW-1075	MW-108S	MW-1081)	MW-109D
Sample Identification:		WG-56393-102611-JV-029	WG-56393-102611-JV-028	WG-56393-102711-JV-030	WG-56393-102711-JV-032	WG-56393-102711-JV-031	WG-56393-102711-JV-033
Sample Date:		10/26/2011	10/26/2011	10/27/2011	10/27/2011	10/27/2011	10/27/2011
Sample Type:							
	Units						
Volatile Organic Compounds							
Acetone	μg/L	R	R	R	R	R	20 U
Benzene	μg/L	0.50 U					
Bromodichloromethane	μg/L	0.50 U					
Bromotorm	μg/L	0.50 U					
Bromomethane (Methyl bromide)	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 Ŭ	0.50 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	R	R	R	R	R	20 U
Carbon disulfide	μg/L	0.50 U					
Carbon tetrachloride	μg/L	0.50 U					
Chlorobenzene	μg/L	0.50 U					
Chloroethane	μg/L	0.50 U					
Chlorotorm (Trichloromethane)	μg/L	0.50 U					
Chloromethane (Methyl chloride)	μg/L	0.50 U					
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	2.0 U					
Dibromochloromethane	μg/L	0.50 U	0.50 U	0.50 ປ	0.50 U	0.50 U	0.50 U
1,2-Dibromoethane (Ethylene dibromide)	μg/L	2.0 U					
1,2-Dichlorobenzene	μg/L	0.50 U					
1,3-Dichlorobenzene	μ g /L	0.50 U	0.50 じ				
1.4-Dichlorobenzene	μg/L	0.50 U					
Dichloroditluoromethane (CFC-12)	μg/L	0.50 U	0.50 じ				
1,1-Dichloroethane	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.14 [0.50 U
1,2-Dichloroethane	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 Ú	0.50 じ
1,1-Dichloroethene	μg/L	0.50 U					
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	μg/L	0.50 U					
1,2-Dichloropropane	μg/L μg/L	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
cis-1,3-Dichloropropene	μg/L μg/L	0.50 U					
trans-1,3-Dichloropropene	μg/L μg/L	0.50 U					
Ethylbenzene	μg/L μg/L	0.50 U	0.50 U	0.50 U 0.50 U	0.50 U	0.50 U	0.50 U
2-Hexanone	μg/L	R	0.50 C	0.50 C R	0.50 U R	0.50 U	0.50 U
Isopropyl benzene	μg/L	2.0 U	2.0 U	2.0 U	2.0 U	R	20 U
Methyl fert butyl ether (MTBE)	μg/L	0.50 U	0.50 U	0.50 U	2.0 U 0.50 U	2.0 U	2.0 U
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	μg/L	20 U	20 U	0.50 C 20 U		0.50 U	0.50 U
Methylene chloride	μg/L	2.0 U	2.0 U	2.0 U	20 U	20 U	20 U
Styrene	μg/L	0.50 U	0.50 U	0.50 U	2.0 U 0.50 U	2.0 U	2.0 U
1.1.2.2-Tetrachloroethane	μg/L	0.50 U	0.50 ป				
Tetrachloroethene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U 0.50 U	0.50 U	0.50 U
Toluene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U 0.50 U	0.50 U
1,2,4-Trichlorobenzene	μg/L	2.0 U	2.0 U	2.0 U	0.50 U 2.0 U	0.50 U 2.0 U	0.50 U
1.1,1-Trichloroethane	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	2.0 U	2.0 U
1.1,2-Trichloroethane	μg/L	0.50 U					
Trichloroethene	μg/L	0.50 U	0.50 U 0.50 U				
				0.00	0.50 0	0.50 U	0.50 U

CPA 050303 Memo 12-Tels

Sample Location: Sample Identification: Sample Date: Sample Type:	MW-1065 WG-56393-102611-JV-029 10/26/2011	MW-106D WG-56393-102611-JV-028 1Q/26/2011	MW-107S WG-56393-102711-JV-030 10/27/2011	MW-1085 WG-56393-102711-JV-032 10/27/2011	MW-108D WG-56393-102711-JV-031 10/27/2011	MW-109D WG-56393-102711-JV-033 10/27/2011
Units						
Trichlorofluoromethane (CFC-11) µg/L	0.50 U					
Vinyl chloride µg/L	0.50 U					
o-Xylene $\mu g/L$	0.50 U					
m&p-Xylenes μg/L	0.50 U					
PCBs						
Aroclor-1016 (PCB-1016) µg/L	0.020 U					
Aroclor-1221 (PCB-1221) μg/L	0.040 U					
Aroclor-1232 (PCB-1232) μg/L	0.020 U					
Aroclor-1242 (PCB-1242) μg/L	0.020 U					
Aroclor-1248 (PCB-1248) μg/L	0.020 U	0.020 U	0.020 ∪	0.020 U	0.020 U	0.020 U
Aroclor-1254 (PCB-1254) μg/L	0.020 U	0.010 [0.020 U	0.020 U	0.020 U	0.020 U
Aroclor-1260 (PCB-1260) μg/L	0.020 U					
Total PCBs µg/L	ND	0.01 [ND	ND	ND	ND
Metals						
Magnesium µg/L	42300	23500	27300	23900	26900	24400
Mercury µg/L	0.0203°	0.001 じ	0.001 U	0.00112 U	0.001 U	0.00022 J
Sodium µg/L	20800	24400	26700	19500	46100	22300
General Chemistry						
Cyanide (total) µg/L	6 J ^c	10 U				
Field Parameters						
Conductivity, field m5/cm	1.243	0.662	0.784	0.736	0.817	0.696
Dissolved oxygen (DO), field mg/L	0.27	2.37	0.27	1,33	0.17	2.28
Oxidation reduction potential (ORP), field millivolts	190.0	-42.5	-21.2	-63.2	-81.1	-68.9
pH, field s.u.	6.78	7.34	6.83	7.00	7.28	7.22
Temperature, field Deg C	13.83	11.74	12.23	12.59	11.82	13.81
Turbidity, field NTU	4.01	1.95	5.21	8.74	3.82	*-

Notes:

Michigan Act 451, Part 201 Cleanup Criteria and Part 213 Risk-based Scree Non-Residential Generic Cleanup Criteria (1).

 $^{^{\}rm (I)}$ Cleanup criteria identified by MDEQ RRD Op Memo No. 1, updated 3/ 451 as amended.

a - Residential drinking water criteria.

h - Non-residential drinking water criteria.

c - Groundwater surface water interface

U - Not present at or above the associated value.

J - Laboratory qualifiers - estimated concentration.

ragion cris-

TABLE 2

SUMMARY OF FEBRUARY 2012 GROUNDWATER ANALYTICAL RESULTS 12th STREET LANDFILL OTSEGO TOWNSHIP, MICHIGAN

Sample Location: MW-101S MW-101D MW-1025 MW-102D MW-103D Michigan Act 451, Part 201 Cleanup Criteria and Part 213 Riskbased Screening Levels: Residential and Non-Residential WG-56393-020612-JV-038 WG-56393-020612-JV-037 WG-56393-020612-JV-040 WG-56393-020612-JV-039 WG-56393-020712-JV-043 Sample Identification: Generic Cleanup Criteria (1) 2/6/2012 2/6/2012 2/6/2012 2/6/2012 2/7/2012 Sample Date: Sample Type: Groundwater Residential Non-Residential Surface Water Units Drinking Water Drinking Water Interface Volatile Organic Compounds Acetone µg/L 730 2100 1700 20 U 20 U 20 U 20 U 20 U $\mu g/L$ Benzene 5 5 200 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 80 Bromodichloromethane 80 ID 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U µg/L Brometerm μg/L 80 80 ID 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U μg/L 29 Bromomethane (Methyl bromide) 10 35 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 2-Butanone (Methyl ethyl ketone) (MEK) μg/L 13000 38000 2200 20 U 20 U 20 U 20 U 20 U μg/L Carbon disulfide 800 2300 ID 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U μg/L Carbon tetrachloride 5 5 45 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U Chlorobenzene 100 100 25 μg/L 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U Chloroethane μg/L 430 1700 1100 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U Chloroform (Trichloromethane) μg/L 80 80 350 0.50 U 0.50 U 0.50 U 0.13 J 0.14 J Chloromethane (Methyl chloride) μg/L 260 1100 ID 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 1,2-Dibromo-3-chloropropane (DBCP) $\mu g/L$ 0.2 0.2 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U Dibromochloromethane µg/L 80 80 lD 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 1,2-Dibromoethane (Ethylene dibromide) 0.05 0.05 5.7 μg/L 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 1,2-Dichlorobenzene $\mu g/L$ 600 600 13 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 1.3-Dichlorobenzene μg/L 19 28 6.6 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U µg/L 1,4-Dichlorobenzene 75 75 17 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U Dichlorodifluoromethane (CFC-12) μg/L 1700 4800 ID 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 1,1-Dichloroethane 880 µg/L 2500 740 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 1,2-Dichloroethane μg/L 5 5 360 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 1.1-Dichloroethene μg/L 7 7 130 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U cis-1.2-Dichloroethene $\mu g/L$ 70 70 620 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U trans-1,2-Dichloroethene µg/L 100 100 1500 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 1,2-Dichloropropane $\mu g/L$ 5 5 230 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U cis-1,3-Dichloropropene μg/L 0.50 U 0.50 U 0.50 U 0.50 L' 0.50 U trans-1,3-Dichloropropene µg/L 0.50 U 0.50 U 0.50 じ 0.50 U 0.50 U Ethylbenzene µg/L 74 74 18 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 2-Hexanone μg/L 1000 2900 1D 20 U 20 U 20 U 20 U 20 U Isopropy1 benzene µg/L 800 2300 28 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U Methyl tert butyl ether (MTBE) ng/L 40 40 7100 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 4-Methyl-2-pentanone (2) $\mu g/L$ 1800 5200 ID 20 U 20 U 20 U 20 U 20 U Methylene chloride μg/L 5 5 1500 2.0 11 2.0 U 2.0 U 2.0 U 2.0 U Styrene 100 µg/L 100 80 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 1,1,2,2-Tetrachloroethane 8.5 µg/L 35 78 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U Tetrachloroethene µg/L 5 5 60 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U Toluene μg/L 790 790 270 0.50 U 0.50 U 0.060 [0.070 [0.50 U 1,2,4-Trichlorobenzene μg/L 70 70 99 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U L.L.1-Trichloroethane

µg/L

μg/L

µg/L

μg/L

μg/L

μg/L

μg/L

1.1,2-Trichloroethane

Trichlorofluoromethane (CFC-11)

Trichloroethene

Vinyl chloride

m&p-Xylenes

o-Xylene

200

5

5

2600

2

280

200

5

5

7300

2

280

89

330

200

13

41

0.50 U

0.50 L¹

0.50 U

0.50 L'

0.50 U

0.50 U

0.50 U

0.50 U

0.50 U

SUMMARY OF FEBRUARY 2012 GROUNDWATER ANALYTICAL RESULTS 12th STREET LANDFILL OTSEGO TOWNSHIP, MICHIGAN

MW-101D MW-102S MW-102D MW-103D MW-101S Sample Location: Michigan Act 451, Part 201 Cleanup Criteria and Part 213 Risk $w_{G-56393-020612-JV-038} \ w_{G-56393-020612-JV-037} \ w_{G-56393-020612-JV-040} \ w_{G-56393-020612-JV-049} \ w_{G-56393-020612-JV-040} \ w_{G-56393-020612-JV-049} \ w_{G-56393-020612-JV-040} \$ Sample Identification: based Screening Levels: Residential and Non-Residential Generic Cleanup Criteria (1) 2/6/2012 2/6/2012 2/6/2012 2/7/2012 2/6/2012 Sample Date: Sample Type: Groundwater Surface Water Non-Residential Residential Drinking Water Interface Units Drinking Water Semi-Volatile Organic Compounds 0.20 U 0.20 U 1300 3800 38 0.20 U 0.20 U 0.20 U ug/L Acenaphthene 0.20 U 52 150 ID 0.20 U 0.20 U 0.20 U 0.20 U Acenaphthylene ug/L 43 43 ID 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U ug/L Anthracene 2.1 8.5 ID 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U Benzo(a)anthracene ug/L 5 5 ID 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U Benzo(a)pyrene ug/L 0.20 U 0.20 U 0.20 U 0.20 U 1.5 1.5 ID 0.20 U Benzo(b)fluoranthene ug/L 1 1 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U ug/L Benzo(g,h,i)pervlene 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U Benzo(k)fluoranthene ug/L 1 1200 2700 67 0.20 U 0.061 I 0.026 T 0.024 J 0.026 J Butyl benzylphthalate (BBP) ug/L ug/L 85 350 10 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U Carbazole 150 420 7.4 0.49 U 0.48 U 0.48 U 0.48 U 0.50 U 4-Chloro-3-methylphenol ug/L bis(2-Chloroethyl)ether ug/L 2 8.3 1 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 45 130 18 0.49 U 0.48 U 0.48 U 0.48 U 0.50 U 2-Chlorophenol ug/L ID 0.20 U Chrysene ug/L 1.6 1.6 0.20 U 0.20 U 0.20 U 0.20 U 2 2 ID 0.20 U 0.20 U 0.20 U 0.20 U Dibenz(a,h)anthracene ug/L 0.20 U ID ID 4 0.20 U 0.20 U 0.20 U Dibenzofuran ug/L 0.20 U 0.20 U 0.3 2.0 U 3,3'-Dichlorobenzidine ug/L 1.1 4.3 2.0 U 2.0 U 2.0 U 2.0 U 2.4-Dichlorophenol 73 210 11 0.49 U 0.48 U ug/L 0.48 U 0.48 U 0.50 U Diethyl phthalate ug/L 5500 16000 110 0.019] 0.033 [0.022 [0.019 J 0.018 [73000 Dimethyl phthalate 210000 0.20 U 0.20 € 0.20 U ug/L 0.20 U 0.20 U 2,4-Dimethylphenol ug/L 370 1000 380 3,9 U 3.9 U 3.9 U 3.9 U 4.0 U Di-n-buty/Iphthalate (DBP) ug/L 880 2500 9.7 0.024 [0.038 I 0.031 J 0.033 1 0.031 J 4,6-Dinitro-2-methylphenol ug/L 20 20 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U ug/L 2,4-Dinitrotoluene 7.7 32 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U Di-n-octyl phthalate (DnOP) ug/L 130 380 ID 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U bis(2-Ethylhexyl)phthalate (DEHP) ug/L 6 6 25 0.98 U 0.96 U 0.96 U 0.96 U 1.0 U Fluoranthene ug/L 210 210 1.6 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 880 2000 Fluorene ug/L 12 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U He cachlorobenzene ug/L 1 ì 0.2 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U ug/L Hexachlorobutadiene 15 42 0.053 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U Hexachlorocyclopentadiene ug/L 50 50 ID 0.98 U 0.96 U 0.96 U 0.96 U 1.0 U Hexachloroethane ug/L 7.3 21 6.7 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U Indeno(1,2,3-cd)pyrene ug/L 2 2 ID 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U Isophorone 770 ug/L 3100 1300 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 2-Methylnaphthalene ug/L 260 750 19 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 2-Methylphenol 370 ug/L 1000 30 0.49 U 0.48 U 0.48 U 0.48 U 0.50 U 4-Methylphenol ug/L 370 1000 30 0.49 U 0.48 L 0.48 U 0.48 U 0.50 U Naphthalene 520 ug/L 1500 11 0,20 U 0.20 U 0 040 1 0.030 J 0.075 I Nitrobenzene ug/L 3.4 180 9.6 0.20 L* 0.20 U 0.20 U 0.20 U 0.20 L 2-Nitrophenol ug/L 20 58 ID 0.49 U 0.48 U 0.48 U 0.48 U 0.50 U N-Nitrosodi-n-propylamine ug/L 5 5 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U N-Nitrosodiphenylamine ug/L 270 1100 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U Pentachlorophenol ug/L 1 $G_i X$ 1 0.98 U 0.96 U 0.96 U 0.96 U 1.0 U Phenanthrene 52 ug/L 150 2 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U Phenol ug/L 4400 13000 450 0.49 U 0.067 [0.48 U 0.48 U 0.50 U

Pyrene

2.4.5-Trichlorophenol

2,4,6-Trichlorophenol

ug/L

ug/L

ug/L

140

730

120

140

2100

470

ID

5

0.20 U

0.49 U

0.49 L

0.20 U

0.48 U

0.48 U

0.20 U

0.48 U

0.48 U

0.20 U

0.48 U

0.48 U

0.20 U

0.50 U

0.50 U

SUMMARY OF FEBRUARY 2012 GROUNDWATER ANALYTICAL RESULTS 12th STREET LANDFILL OTSEGO TOWNSHIP, MICHIGAN

Sample Location:		Michigan Act 451, Par		and Part 213 Risk-	MW-101S	MW-101D	MW-102S	MW-102D	MW-103D
Sample Identification:			vels; Residential and?				WG-56393-020612-JV-040		
Sample Date:		Gen	eric Cleanup Criteria		2/6/2012	2/6/2012	2/6/2012	2/6/2012	2/7/2012
Sample Type:	Units	Residential Drinking Water	Non-Residential Drinking Water	Groundwater Surface Water Interface					
PCBs									
Araclor-1016 (PCB-1016)	μg/L	-	-	-	0.021 U	0.021 U	0.021 U	0.020 U	0.021 U
Aroclor-1221 (PCB-1221)	μg/L	-		-	0.041 U	0.041 U	0.041 U	0.040 U	0.041 U
Aroclor-1232 (PCB-1232)	μg/L	-	-		0.021 U	0.021 U	0.021 U	0.020 U	0.021 U
Aroclor-1242 (PCB-1242)	μg/L	-	-	-	0.021 U	0.021 U	0.021 U	0.020 U	0.021 U
Aroclor-1248 (PCB-1248)	μg/L	-	-	-	0.021 U	0.021 U	0.021 U	0.020 U	0.021 U
Aroclor-1254 (PCB-1254)	μg/L	-	-	-	0.021 U	0.021 U	0.021 U	0.020 U	0.021 U
Aroclot-1260 (PCB-1260)	μg/L	-	-	-	0.021 U	0.021 U	0.021 U	0.020 U	0.021 U
Total PCBs	μg/L	0.5	0.5	0.2	ND	ND	ND	ND	ND
Dioxins									
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	ug/L	-	-	-	0.000049 U	0.0000521 U	0.000049 U	0.0000481 U	0.00005 U
1,2,3.4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	ug/L	-	-		0.00000667 J	0.00000698 J	0.00000626 JK	1 500000.0	0.0000068 J
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
1,2,3.6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	ug/L	-		-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
1,2,3,7,8.9-Hexachlorodibenzo-p-dioxin (HxCDD)	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
2,3,4,6,7 8-Hexachlorodibenzofuran (HxCDF)	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
2,3,7.8-Tetrachlorodibenzofuran (TCDF)	ug/L	-	-	-	0.0000098 U	0.0000104 U	0.0000098 U	0.00000962 U	0.00001 U
2.3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	ug/L	0.00003	0.00003	0.00001	0.0000098 U	0.0000104 U	0.0000098 U	0.00000962 U	0.00001 U
Total heptachlorodibenzofuran (HpCDF)	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
Total heptachlorodibenzo-p-dioxin (HpCDD)	ug/L	-	-	-	0.0000245 U	0.00000186 J	0.0000245 U	0.000024 U	0.000025 U
Total hexachlorodibenzofuran (HxCDF)	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
Total hexachlorodibenzo-p-dioxin (HxCDD)	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
Total pentachlorodibenzofuran (PeCDF)	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
Total pentachlorodibenzo-p-dioxin (PeCDD)	ug/L	-	-	-	0.0000245 U	0.000026 U	0.0000245 U	0.000024 U	0.000025 U
Total tetrachlorodibenzoturan (TCDF)	ug/L	-	-	•	0.0000098 U	0.0000104 U	0.0000098 U	0.00000962 U	0.00001 U
Total tetrachlorodibenzo-p-dioxin (TCDD)	ug/L	-	-	-	U 89000000	0.0000104 U	0.9000098 U	0.00000962 U	0.00001 U

TABLE 2

Sample Location:		Michigan Act 451, Par	t 201 Cleanup Criteria vels: Residential and l		MW-101S WG-56393-020612-JV-038	MW-101D WG-56393-020612-IV-037	MW-1025 WG-56393-020612-TV-040	MW-102D WG-56393-020612-JV-039	MW-103D WG-56393-020712-JV-043
Sample Identification:			eric Cleanup Criteria		2/6/2012	2/6/2012	2/6/2012	2/6/2012	2/7/2012
Sample Date:			the cicining criteria			-, ,			
Sample Type:	Units	Residential Drinking Water	Non-Residential Drinking Water	Groundwater Surface Water Interface					
Metals									
Aluminum	ug/L	50	50	-	7.0	15.0	3.8	3.5	4.5
Antimony	ug/L	6	6	130	0.019 J	0.024 J	0.040 J	0.026 J	0.019 J
Arsenic	ug/L	10	10	10	0.15 J	0.19 J	0.16 J	0.21 [0.17 J
Barium	ug/L	2000	2000	1400	77.0	80.1	79.2	70.5	64.6
Beryllium	ug/L	4	4	41	0.020 U	0.020 U	0 020 U	0.020 U	0.020 U
Cadmium	ug/L	5	5	5.1	0.020 U	0.011 J	0.012 [1 800.0	0.020 U
Chromium (total)	ug/L	100	100	11	0.14 J	0.26	0.05 J	0.14 J	0.17 J
Chromium VI (hexavalent)	ug/L	100	100	11	2.0 U,X				
Cobalt	ug/L	40	100	100	0.034	0.079	0.176	0.029	0.047
Copper	ug/L	1000	1000	23	0.40	1.37	0.39	0.33	0.33
Iron	ug/L	300	300	•	54.4	84.0	52.9	7.7	9.9 J
Lead	ug/L	4	4	34	0.060	0.221	0.020	0.048	0.023
Magnesium	ug/L	400000	1100000	=	24800	24300	26200	23800	23200
Manganese	ug/L	50	50	5200	2.26	3.91	162**	0.40	0.57
Mercury	ug/L	2	2	0.0013	0.00327°	0.00157°	0.00111	0.00096 J	0.00076 J
Nickel	ug/L	100	100	130	0.24	0.57	0.49	0.19 [0.26
Selenium	ug/L	50	50	5	0.4 J	1.0 U	1.0 U	0.2 [0.2 J
Silver	ug/L	34	98	0.2	0,020 U	0.020 U	0.020 U	0.020 U	0.020 U
Sodjum	ug/L	120000	350000	-	23500	25300	20300	21800	22400
Thallium	ug/L	2	2	3.7	0.00191	0.0019 J	0.0191 J	0.0025 J	0.0031 J
Vanadium	ug/L	4.5	62	12	0.088 J	0.211	0.074 [0.107 J	0.097 J
Zinc	ug/L	2400	5000	310	0.94	5.12	0.32 J	0.67	0.52
General Chemistry									
Cyanide (amenable)	ug/L	200	200		10 U				
Cyanide (total)	μg/L	200	200	5.2	10 U				
Field Parameters									
Conductivity	mS/cm	ē	_	-	0.544	0.559	0.587	0.511	0.503
Dissolved oxygen (DO) ⁽³⁾	mg/L								
Oxidation reduction potential (ORP)	millivolts		-	-	- 202	-	- 77	- 120	-
pH		6.5 - 8.5	- 6.5 - 8.5		7.23	189 7.25	7.02	128	173
pri Temperature	s.u. Dog C	0.5 - 0.5	6.5 - 6.5	-	7.23 9.2			7.21	7.37
Turbidity	Deg C NTU	•		-		10.8	7	9	9.7
Luchany	NIU	•	-	-	< 3.69	<3.35	4.34	<2.98	<2.68

Notes:

⁽¹⁾ Cleanup criteria identified by MDEQ RRD Op Memo No. 1, updated 3/25/2011, pursuant to 1994 PA 451 as amended.

⁽²⁾ Also known as Methyl isobutyl ketone (MIBK)

⁽³⁾DO results were not obtained at MW-1015, MW-101D, MW-1-2S, MW-102D, MW-103D, MW-104S, MW-104D, MW-5S, MW-105D, and MW- 06S due to DO meter failure

U - Not present at or above the associated value.

J - Laboratory qualifiers - estimated concentration.

cupy a some

TABLE 2

SUMMARY OF FEBRUARY 2012 GROUNDWATER ANALYTICAL RESULTS 12th STREET LANDFILL OTSEGO TOWNSHIP, MICHIGAN

Sample Location:		MW-103D	MW-104S	MW-104D	MW-105S	MW-105D	MW-106S	MW-106D
Sample Identification:		WG-56393-020712-JV-044	WG-56393-020712-JV-04	6 WG-56393-020712-JV-048	5 WG-56393-020712-JV-048	WG-56393-020712-JV-047	WG-56393-020712-JV-050	WG-56393-020712-JV-049
Sample Date:		2/7/2012	2/7/2012	2/7/2012	2/7/2012	2/7/2012	2/7/2012	2/7/2012
Sample Type:		Duplicate						
	Units							
Volatile Organic Compounds		20.11	***					***
Acetone	μg/L	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Benzene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Bromodichloromethane	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Bromoform	μg/L	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U	0.50 L'	0.50 U	0.50 U	0.50 U
Bromomethane (Methyl bromide)	μg/L	0.50 U 20 U	0.50 U 20 U	0.50 U 20 U	0.50 U 20 U	0.50 U	0.50 U	0.50 U 20 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	0.50 U	0.50 U	0.50 U		20 U	20 U	
Carbon disulfide	μg/L				0.50 U	0.50 U	0.50 U	0.50 U
Carbon tetrachloride	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Chlorobenzene	μg/L	0.50 U	0.50 U 0.50 U	0.50 U	0.50 U	0.50 U	0.50 Ľ	0.50 U
Chloroethane	μg/L	0.50 U		0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Chlorotorm (Trichloromethane)	μg/L	0.16 J	0.50 U	0.50 U	0.50 U	0.080	0.50 U	0.50 U
Chloromethane (Methyl chloride)	μg/L	0.50 U	0.50 U	0.50 U	0.50 L ¹	0.50 U	0.50 U	0.50 U
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 ℃	2.0 ∪
Dibromochloromethane	μg/L	0.50 U	0.50 L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1.2-Dibromoethane (Ethylene dibromide)	μg/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichlorobenzene	μg/L	0.50 U	0.50 じ	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,3-Dichlorobenzene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,4-Dichlorobenzene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Dichlorodifluoromethane (CFC-12)	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 บั
1,1-Dichloroethane	μg/L	0,50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,2-Dichloroethane	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 Ľ
I,1-Dichloroethene	μg/L	0.50 U	0.50 U	0.50 U	0.50 LT	0.50 じ	0.50 U	0.50 U
cis-1,2-Dichloroethene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
trans-1,2-Dichloroethene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,2-Dichloropropane	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
cis-1,3-Dichloropropene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
trans-1,3-Dichloropropene	μg/L	0.50 U	0.50 U	0.50 U	0.50 Ľ	0.50 U	0.50 U	0.50 U
Ethylbenzene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
2-Hexanone Isopropyl benzene	µg/L	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Methyl tert butyl ether (MTBE)	μg/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
4-Methyl-2-pentanone (2)	μg/L	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Methylene chloride	μg/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Styrene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1.1,2,2-Tetrachloroethane	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Tetrachloroethene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Toluene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.070 J
1.2,4-Trichlorobenzene	μg/L	2.0 U	2.0 U	2.0 L ¹	2.0 U	2.0 U	2.0 U	2.0 U
1.1,1-Trichloroethane	μg/L	0.50 U	0.50 U	0.50 U	0.12 J	0.090 J	0.50 U	0.10 J
1,1,2-Trichloroethane	μg/L	0.50 U	0.50 じ	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Trichloroethene	µg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Trichlorofluoromethane (CFC-11)	μ g /L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Vinyl chloride	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
o-Xylene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 L'
m&p-Xylenes	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U

SUMMARY OF FEBRUARY 2012 GROUNDWATER ANALYTICAL RESULTS 12th STREET LANDFILL OTSEGO TOWNSHIP, MICHIGAN

Seminar Semi	Sample Location:		MW-103D	MW-104S	MW-104D	MW-105S	MW-105D	MW-106S	MW-106D
Page	Sample Identification:		WG-56393-020712-JV-044	WG-56393-020712-JV-046	• WG-56393-020712-JV-045	WG-56393-020712-JV-048	WG-56393-020712-JV-047	WG-56393-020712-JV-050	WG-56393-020712-JV-049
Semi-Valuatic Organic Compromes	Sample Date:		2/7/2012	2/7/2012	2/7/2012	2/7/2012	2/7/2012	2/7/2012	2/7/2012
Semi-Conference Semi-Confe	Sample Type:		Duplicate						
Semi-Conference Semi-Confe									
Actorsphishere wg/L 0.30 c 0.30 c		Units							
Accordant March	υ ,					0.0071	0.70.11	0.201:	0.20 1:
Anti-core Control Co	•								
Percentify Per									
Personal process Personal process Personal process Personal process 2011		-							
Part	, ,								
Pennegliphiprophere	* *	-							
Penne									
Book Presency phenalate (BBT)									
Carticolor Gall Carticolor Carticolo	, ,	-							
A-Climor-S-methylphenol	· ·			•					
No. Californic Professor September									
2-Charyshere 0g/L 0.9 t	• •								
Chrisme									
District D	-	-							
Disease Dise	•								
2-10-bitocolemizatione mg/L 2.0 U 2.0									
2-10-bithorphenol ug/L 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.50 U 0.50 U									
Dimethy phthalate									
Dimethyl phblake	•								
2-1-Chenthylphenol 196 197 199 1				•		·			•
Destary phibalate (DBP)	• •						·		
40-District-Carethylphenol	• •								
24-Dintrolucee					· ·	·	•		
Denocyty phthalate (DnOP)	, .								
Disign D									
Fluoranthene		-							
Fluorene									
Hexachlorobrazene									
Hexachlorobutadiene									
Hexachlorocyclopentadiene									
He sachloroethane									
Indeno(1,2,3-cd)pyrene	- •	-							
Sophorone		_							
2-Methylnaphthalene ug/L 0.20 U 0.20	• •								
2-Methylphenol ug/L 0.48 U 0.50 U 0.5	•	-							
4-Methylphenol ug/L 0.48 U 0.50 U 0.5	•								
Naphthalene ug/L 0.20 U 0.20	· ·	-							
Nitrobenzene ug/L 0.20 U 0.20		_							
2-Nitrophenol ug/L 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.50	•							<u>-</u>	
N-Nitrosodi-n-propylamine ug/L 0.20 U		_							
N-Nitrosodiphenylamine ug/L 0.20 U 0.	•	-							
Pentachlorophenol ug/L 0.96 U 0.20 U 0.96 U 0.96 U 0.96 U 0.96 U 0.20 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Phenanthrene ug/L 0.20 U 0.2									
Phenol ug/L 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.20	•								
Pyrene ug/L 0.20 U 0.50 U 0.50 U 0.50 U 0.50 U		-							
2,4 5-Trichlorophenol ug/L 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.50 U 0.50 U									
2.4 6.Trichlerophonal (2.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1	•	-							•
2,5 0-11 km/or option to ug/L 0.48 U 0.48 U 0.48 U 0.50 U 0.50 U	•								
	2,4 v-111cmorophenot	ug/L	U.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U

SUMMARY OF FEBRUARY 2012 GROUNDWATER ANALYTICAL RESULTS 12th STREET LANDFILL OT5EGO TOWNSHIP, MICHIGAN

Sample Location:		MW-103D	MW-104S	MW-104D	MW-1055	MW-105D	MW-106S	MW-106D
Sample Identification:		WG-56393-020712-JV-044	WG-56393-020712-JV-046	WG-56393-020712-JV-045	WG-56393-020712-JV-048	WG-56393-020712-JV-047	WG-56393-020712-JV-050	WG-56393-020712-JV-049
Sample Date:		2/7/2012	2/7/2012	2/7/2012	2/7/2012	2/7/2012	2/7/2012	2/7/2012
Sample Type:		Duplicate						
, ,,								
	Units							
PCBs								
Aroclor-1016 (PCB-1016)	μg/L	0.020 U	0.021 U	0.021 U	0.020 U	0.021 U	0.020 U,	0.020 U
Aroclor-1221 (PCB-1221)	μg/L	0.040 U	0.041 U	0.041 U	0.040 U	0.041 U	0.040 U,	0.040 U
Aroclor-1232 (PCB-1232)	μg/L	0.020 U	0.021 U	0.021 U	0.020 U	0.021 U	0.020 U,	0.020 U
Aroclor-1242 (PCB-1242)	μg/L	0.020 U	0.021 U	0.021 U	0.020 U	0.021 U	0.020 U,	0.020 U
Aroclor-1248 (PCB-1248)	μg/L	0.020 U	0.021 U	0.021 U	0.020 U	0.021 U	0.020 U,	0.020 U
Aroclor-1254 (PCB-1254)	μg/L	0.020 U	0.021 U	0.021 U	0.020 U	0.021 U	0.020 U	0.020 U
Aroclor-1260 (PCB-1260)	μg/L	0.020 U	0.021 U	0.021 U	0.020 U	0.021 U	0.020 U	0.020 U
Total PCBs	μg/L	ND						
Dioxius								
1.2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	ug/L	0.000049 U	0.0000481 U	0.0000481 U	0.000049 U	0.0000532 U	0.000051 U	0.00000254 J
1,2,3,4,6.7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	ug/L	0.00000705 J	0.00000542 J	0.00000541 J	0.00000879 J	0.00000973 J	0.00000779 [0.0000292 J
1,2,3,4.6.7,8-Heptachlorodibenzofuran (HpCDF)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
1,2,3,4,7.8-Hexachlorodibenzofuran (HxCDF)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
1,2,3,6,7.8-Hexachlorodibenzofuran (HxCDF)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
1,2,3,6,7.8-Hexachlorodibenzo-p-dioxin (HxCDD)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
1,2,3,7,8,9-Hexachlorodibenzoturan (HxCDF)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0,0000255 U	0.0000255 U
1.2.3,7,8-Pentachlorodibenzofuran (PeCDF)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
2,3,4,6,7.8-Hexachlorodibenzofuran (HxCDF)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
2,3.7,8-Tetrachlorodibenzofuran (TCDF)	ug/L	0.0000098 ∪	0.00000962 U	0.00000962 U	0.0000098 U	0.0000106 U	0.0000102 U	0.0000102 U
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	ug/L	0.0000098 U	0.00000962 U	0.00000962 U	0.0000098 U	0.0000106 U	0.0000102 U	0.0000102 U
Total heptachlorodibenzofuran (HpCDF)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0,0000255 U	0.0000255 U
Total heptachlorodibenzo-p-dioxin (HpCDD)	ug/L	0.0000245 ∪	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
Total hexachlorodibenzofuran (HxCDF)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
Total hexachlorodibenzo-p-dioxin (HxCDD)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
Total pentachlorodibenzofuran (PeCDF)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
Total pentachlorodibenzo-p-dioxin (PeCDD)	ug/L	0.0000245 U	0.000024 U	0.000024 U	0.0000245 U	0.0000266 U	0.0000255 U	0.0000255 U
Total tetrachlorodibenzofuran (TCDF)	ug/L	0.0000098 U	0.00000962 U	0.00000962 U	0.0000098 U	0.0000106 U	0.0000102 U	0.0000102 U
Total tetrachlorodibenzo-p-dioxin (TCDD)	ug/L	0.0000098 U	0.00000962 U	0.00000962 U	0.0000098 L	0.0000106 U	0.0000102 U	0.0000102 U

TABLE 2

Sample Location:		MW-103D	MW-1045	MW-104D	MW-105S	MW-105D	MW-1065	MW-106D
Sample Identification:	ν	VG-56393-020712-IV-044		WG-56393-020712-JV-045	WG-56393-020712-JV-048	WG-56393-020712-JV-047	WG-56393-020712-JV-050	WG-56393-020712-JV-049
Sample Date:	·	2/7/2012	2/7/2012	2/7/2012	2/7/2012	2/7/2012	2/7/2012	2/7/2012
Sample Lyare: Sample Type:		Duplicate	7.7	,				
Sample Type.		2.11/						
	Umts							
Metals								• 0
Aluminum	ug/L	4.0	8.0	4.7	2.1	7.0	2.4	2.8
Antimony	ug/L	0.012 J	0.016 J	0.021 [0.021 J	0.021 J	0.146	0.085
Arsenic	ug/L	0.17 J	0.21 J	0.23 [0.14 J	0.21 J	5.77	0.24 1
Barium	ug/L	63.7	74.2	66.9	114	80.6	443	81.4
Beryllium	ug/L	0.020 U	0. 02 0 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 ป
Cadmium	ug/L	0.020 U	0.07 J	0.008 J	0.010 }	0.020 U	0.029	0.008 [
Chromium (total)	ug/L	0.18 J	0.23	0.31	0.25	0.30	0.23	0.36
Chromium VI (hexavalent)	ug/L	2.0 U,X	2.0 U,λ	2.0 U, X	2.0 U, \lambda	2.0 U,X	2.0 U,X	2.0 U,X
Cobalt	ug/L	0.050	0.038	0.034	0.179	0.037	0.578	0.019 J
Copper	ug/L	0.28	0.43	0.27	0.35	0.38	0.50	0.34
Iron	ug/L	10.0 J	38.3	13.7 J	48.5	36.7	8220 ^{ab}	9.9 J
Lead	ug/L	0.014 J	0.042	0.027	0.032	0.067	0.016 J	0.020 J
Magnesium	ug/L	23400	24100	22800	30800	25200	40500	24200
Manganese	ug/L	0.45	1.62	0.73	98.1 ^{2h}	1.48	479 ^{ah}	0.41
Mercury	ug/L	0.00054 J	0.00087 J	0.00053 J	0.00058 J	0.00053 J	0.00447°	0.00053 J
Nickel	ug/L	0.28	0.45	0.2	0.44	0.23	2.47	0.23
Selenium	ug/L	0.2 J	0.2 J	0.2 1	0,2 J	1.0 U	0.3 [0.3 J
Silver	ug/L	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U
Sodium	ug/L	19800	22300	21900	25800	22000	17000	24400
Thallium	ug/L	0.0034 J	0.0009 J	0.0033 1	0.0043 J	0.0200 U	0.0009 J	0.0065 J
Vanadium	ug/L	0.120 J	0.160	0.145 J	0.057 J	0.088 J	0.135 J	0.116 J
Zinc	ug/L	0.36 J	0.45 J	0.63	1.40	0.97	40.0	0.92
General Chemistry								
Cyanide (amenable)	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Cyanide (total)	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Field Parameters								
Conductivity	mS/cm	0.503	0.519	0.503	0.847	0.9	1.23	0.724
Dissolved oxygen (DO)(3)	mg/L	-	-	-	-	-	-	2.07
Oxidation reduction potential (ORP)	millivolts	173	188	188	1.4	212	-119	-31
Н	5.u.	7,37	7.32	7.35	7.01	7.07	6.77	7.25
Temperature	Deg C	9.7	9.2	10.1	8.4	8.01	6.8	10.8
Turbidity	NTU	<2.68	<3.14	<2.73	<2.11	<1.23	<0.95	<1.52
*			****			11-5	00	

Notes:

⁽¹⁾ Cleanup criteria identified by MDEQ RRD Op Memo No. 1, updated 3/25/2011, pursuant to 1994 PA 451 as amended.

⁽²⁾Also known as Methyl isobutyl ketone (MIBK)

⁽³⁾DO results were not obtained at MW-1015, MW-101D, MW-1-25, MW-102D, MW-103D, MW-104S, MW-104D, MW-58, MW-105D, and MW-106S due to DO meter failure

U - Not present at or above the associated value.

J - Laboratory qualifiers - estimated concentration.

SUMMARY OF FEBRUARY 2012 GROUNDWATER ANALYTICAL RESULTS 12th STREET LANDFILL OTSEGO TOWNSHIP, MICHIGAN

 Sample Location:
 MW-1075
 MW-1085
 MW-108D
 MW-109D

 Sample Identification:
 WG-56393-020812-JV-051
 WG-56393-020812-JV-053
 WG-56393-020812-JV-052
 WG-56393-020812-JV-052

	Units				
Volatile Organic Compounds					
Acetone	μg/L	20 U	20 U	20 U	20 U
Benzene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
Bromodichloromethane	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
Bromoform	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
Bromomethane (Methyl bromide)	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	20 U	20 U	20 U	20 U
Carbon disulfide	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
Carbon tetrachloride	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
Chlorobenzene	μg/L	0.50 U	0.50 ℃	0.50 U	0.50 U
Chloroethane	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
Chloroform (Trichloromethane)	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
Chloromethane (Methyl chloride)	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
1.2-Dibromo-3-chloropropane (DBCP)	μg/L	2.0 U	2.0 U	2.0 U	2.0 U
Dibromochloromethane	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
1,2-Dibromoethane (Ethylene dibromide)	μg/L	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichlorobenzene	µg/L	0.50 U	0.50 U	0.50 U	0.50 U
1,3-Dichlorobenzene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
1,4-Dichlorobenzene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
Dichlorodifluoromethane (CFC-12)	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
1.1-Dichloroethane	μg/L	0.50 U	0.50 U	0.15]	0.50 U
1,2-Dichloroethane	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
1,1-Dichloroethene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
cis-1,2-Dichloroethene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
trans-1,2-Dichloroethene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
1,2-Dichloropropane	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
cis-1,3-Dichloropropene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
trans-1,3-Dichloropropene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
Ethylberizene	μg/L	0.50 U	0.50 ∪	0.50 U	0.50 U
2-Hexanone	μg/L	20 U	20 U	20 U	20 U
Isopropyl benzene	μg/L	2.0 U	2.0 U	2.0 U	2.0 U
Methyl tert butyl ether (MTBE)	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
4-Methy)-2-pentanone (2)	μg/L	20 U	20 U	20 U	20 U
Methylene chloride	μg/L	2.0 U	2.0 U	2.0 U	2.0 U
Styrene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
1,1.2,2-Tetrachloroethane	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
Tetrachloroethene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
Toluene	μg/L	0.50 U	0.50 U	0.50 U	0.50 บั
1,2,4-Trichlorobenzene	μg/L	2.0 U	2.0 U	2.0 U	2.0 U
1.1.1-Trichloroethane	μg/L	0.50 U	0.50 U	0.12 J	0.50 U
1.1.2-Trichloroethane	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
Trichloroethene	μg/L	0.50 U	0.50 ป	0.50 U	0.50 U
Trichlorofluoromethane (CFC-11)	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
Vinyl chloride	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
o-Xylene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
m&p-Xylenes	μg/L	0.50 U	0.50 U	0.50 U	0.50 U
				0.50 0	0.50 C

SUMMARY OF FEBRUARY 2012 GROUNDWATER ANALYTICAL RESULTS 12th STREET LANDFILL OTSEGO TOWNSHIP, MICHIGAN

Sample Location:	MW-107S	MW-108S	MW-108D	MW-109D
Sample Identification:	WG-56393-020812-JV-05	1 WG-56393-020812-JV-053		
Sample Date:	2/8/2012	2/8/2012	2/8/2012	2/1/2012
Sample Type:				
Unit:				
Semi-Volatile Organic Compounds	0.20 U	0.20 U	0.20 U	0.20 U
Acenaphthene ug/1		0.20 U	0.20 U	0.20 U
Acenaphthylene ug/i		0.20 U	0.20 U	0.20 U
Anthracene ug/1		0.20 U	0.023 J	0.20 U
Benzo(a)anthracene ug/1		0.20 U	0.20 U	0.20 U
Benzo(a)pyrene ug/1			0.20 U	0.20 U
Benzo(b)fluoranthene ug/3		0.20 U		0.20 U
Benzo(g,h,i)perylene ug/l		0.20 U	0.20 L	
Benzo(k)fluoranthene ug/l		0.20 U	0.20 U	0.20 U
Butyl benzylphthalate (BBP) ug/l		0.20 U	0.027 J	0.024 J
Carbazole ug/l		0.20 U	0.20 U	0.20 U
4-Chloro-3-methylphenol ug/l		0.48 U	0.50 🖸	0.48 U
bis(2-Chloroethyl)ether ug/1		0.20 U	0.20 U	0.20 U
2-Chlorophenol ug/1		0.48 U 0.20 U	0.50 E	0.48 U
Chrysene ug/1			0.20 U	0.20 U
Dibenz(a,h)anthracene ug/l		0.20 U	0.20 L	0.20 U
Dibenzofuran ug/1		0.20 U	0.20 U	0.20 U
3,3'-Dichlorobenzidine ug/l		2.0 U	2.0 U	2.0 U
2,4-Dichlorophenol ug/l		0.48 U	0.50 U	0.48 U
Diethyl phthalate ug/l		0.021 J	0.028 J	0.021 J
Dimethyl phthalate ug/l		0.20 U	0.024 J	0.20 U
2,4-Dimethylphenol ug/1		3.9 U	4.0 U	3.9 U
Di-n-butylphthalate (DBP) ug/l		0.20 U	0.035 J	0.025 J
4,6-Dinitro-2-methylphenol ug/l		2.0 U	2.0 ℧	2.0 U
2,4-Dinitrotoluene ug/l		0.20 U	0.20 U	0.20 U
Di-n-octyl phthalate (DnOP) ug/l		0.20 U	0.019 J	0.20 U
bis(2-Ethylbexyl)phthalate (DEHP) ug/l		0.96 U	1.0 J	0.96 U
Fluoranthene ug/l		0.20 U	0.020 J	0.20 U
Fluorene ug/l		0.20 U	0.20 U	0.20 U
Hexachlorobenzene ug/l		0.20 U	0.20 U	0.20 U
He vachlorobutadiene ug/l		0.20 U	0.20 U	0.20 U
He sachlorocyclopentadiene ug/l		0.96 U	1.0 C	0.96 U
Hexachloroethane ug/l		0.20 U	0.20 U	0.20 U
Indeno(1,2,3-cd)pyrene ug/I		0.20 U	0.20 U	0.20 U
Isophorone ug/I		0.20 U	0.20 U	0.20 U
2-Methylnaphthalene ug/l		0.20 U	0.20 U	0.20 U
2-Methylphenol ug/I		0.48 U	0.50 U	0.48 U
4-Methylphenol ug/I		0.48 U	0.50 U	0.48 L
Naphthalene ug/I		0.20 U	0.042 1	0.039 J
Nitrobenzene ug/t		0.20 U	0.20 U	0.20 U
2-Nitrophenol ug/1		0.48 U	0.50 U	0.48 U
N-Nitrosodi-n-propylamine ug/l		0.20 U	0.20 U	0.20 U
N-Nitrosodiphenylamine ug/I		0.20 U	0.20 U	0.20 U
Pentachlorophenol ug/I		0.96 U	1.0 U	0.96 U
Phenanthrene ug/L		0.20 U	0.20 U	0.20 U
Phenol ug/1		0.48 U	0.50 U	0.48 U
Pyrene ug/L		0.20 U	0.022	0.20 U
2,4.5-Trichlorophenol ug/L		0.48 U	0.50 U	0.48 U
2,4.6-Trichlorophenol ug/L	0.50 U	0.48 U	0.50 L [†]	0.48 U

108611 01 14

TABLE 2

SUMMARY OF FEBRUARY 2012 GROUNDWATER ANALYTICAL RESULTS 12th STREET LANDFILL OTSEGO TOWNSHIP, MICHIGAN

Sample Location:		MW-107S	MW-108S	MW-108D	MW-109D
Sample Identification:		WG-56393-020812-JV-051	WG-56393-020812-JV-053	3 WG-56393-020812-JV-052	WG-56393-020612-JV-041
Sample Date:		2/8/2012	2/8/2012	2/8/2012	2/1/2012
Sample Type:					
1 19					
	Units				
PCBs					
Areclor-1016 (PCB-1016)	μg/L	0.021 U	0.020 U	0.021 U	0.021 U
Aroclor-1221 (PCB-1221)	μg/L	0.041 U	0.040 U	0.041 U	0.041 U
Aroclor-1232 (PCB-1232)	μg/L	0.021 U	0.020 U	0.021 U	0.021 U
Aroclor-1242 (PCB-1242)	μg/L	0.021 U	0.020 U	0.021 U	0.021 U
Aroclor-1248 (PCB-1248)	μg/L	0.021 U	0.020 U	0.021 U	0.021 U
Aroclor-1254 (PCB-1254)	μg/L	0.021 U	0.020 U	0.021 U	0.021 U
Aroclor-1260 (ΓCB-1260)	μg/L	0.021 U	0.020 U	0.021 U	0.021 U
Total PCBs	μg/L	ND	ND	ND	ND
Dioxus					
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	ug/L	0.000049 U	0.00005 U	0.00005 ∪	0.00005 U
1.2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	ug/L	0.00000719 J	0.00000941 J	0.0000103 J	0.0000066 J
1,2,3.4,6.7,8-Heptachlorodibenzofuran (HpCDF)	ug/L	0.0000245 U	0.000025 U	0.000025 U	0.000025 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD	ug/L	0.0000245 U	0.000025 U	0.000025 U	0.000025 U
1,2,3,4,7.8,9-Heptachlorodibenzofuran (HpCDF)	ug/L	0.0000245 U	0,000025 U	0.000025 U	0.000025 U
1,2,3.4,7.8-Hexachlorodibenzofuran (HxCDF)	ug/L	0.0000245 U	0.000025 U	0.000025 U	0.000025 U
1,2,3,4,7.8-Hexachlorodibenzo-p-dioxin (HxCDD)	ug/L	0.0000245 U	0.000025 U	0.000025 U	0.000025 U
1,2,3,6,7.8-Hexachlorodibenzofuran (HxCDF)	ug/L	0.0000245 U	0.000025 U	0.000025 U	0.000025 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	ug/L	0.0000245 U	0.000025 U	0.000025 U	0.000025 U
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	ug/L	0.0000245 U	0.000025 U	0.000025 U	0.000025 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	ug/L	0.0000245 U	0.000025 U	0.000025 U	0.000025 U
1.2,3,7,8-Pentachlorodibenzofuran (PeCDF)	ug/L	0.0000245 U	0.000025 U	0.000025 U	0.000025 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	ug/L	0.0000245 U	0.000025 U	0.000025 U	0.000025 U
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	ug/L	0.0000245 L!	0.000025 U	0.000025 U	0.000025 U
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	ug/L	0.0000245 U	0.000025 U	0.000025 U	0.000025 U
2,3,7,8-Tetrachiorodibenzofuran (TCDF)	ug/L	0.0000098 U	0.00001 U	0.00091 U	0.00001 U
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	ug/L	0.0000098 U	0.00001 U	0.00001 U	0.00001 U
Total heptachlorodibenzofuran (HpCDF)	ug/L	0.0000245 U	0.000025 U	0.000025 U	0.000025 U
Total heptachlorodilænzo-p-dioxin (HpCDD)	ug/L	0.0000245 U	0.000025 U	0.000025 U	0.000025 U
Total hexachlorodibenzofuran (HxCDF)	ug/L	0.0000245 U	0.000025 U	0.0000 2 5 U	0.000025 U
Total hexachlorodibenzo-p-dioxin (HxCDD)	ug/L	0.0000245 U	0.000025 U	0.000025 U	0.000025 U
Total pentachlorodibenzofuran (PeCDF)	ug/L	0.0000245 U	0.000025 U	0.000025 U	0.000025 U
Total pentachlorodibenzo-p-dioxin (PeCDD)	ug/L	0.0000245 U	0.000025 U	0.000025 U	0.000025 U
Total tetrachlorodibenzofuran (TCDF)	ug/L	0.0000098 U	0.00001 U	0.00001 U	0.00001 U
Total tetrachlorodibenzo-p-dioxin (TCDD)	ug/L	0.0000098 U	0.00001 U	0.00001 U	0.00001 U

TABLE 2

Sample Location:		MW-107S	MW-1085	MW-108D	MW-109D
Sample Identification:		WG-56393-020812-JV-051	WG-56393-020812-JV-053	WG-56393-020812-JV-052	WG-56393-020612-JV-041
Sample Date:		2/8/2012	2/8/2012	2/8/2012	2/1/2012
Sample Type:					
	Units				
Metals					
Aluminum	ug/L	1.3 J	3.4	2.9	1.1 J
Antimony	ug/L	0.023 J	0.035 J	0.038 J	0.02 J
Arsenic	ug/L	1.81	0.53	1.31	0.13 J
Barjum	ug/L	103	99.7	303	81.4
Bery Ilium	ug/L	0.020 U	0.020 U	0.020 U	0.020 U
Cadmium	ug/L	0.004	0.017 J	0.008 J	0.020 L
Chromium (total)	ug/L	0.0 4 7 J	0.09 J	0.15 [0.11 J
Chromium VI (hexavalent)	ug/L	2.0 U	2.0 U,X	2.0 U,X	2.0 U,X
Cobalt	ug/L	0.648	0.369	0.438	0.037
Copper	ug/L	0.50	0.47	0.20	0.37
Iron	ug/L	3290°b	122	398*	11.43
Lead	ug/L	0.010 J	0.035	0.018 J	0.009 J
Magnesium	ug/L	28300	24700	27200	24100
Manganese	ug/L	709ªb	448*5	283 ^{4b}	0.17
Mercury	ug/L	0.00057 [0.000851	0.0007 J	0.00081 [
Nickel	ug/L	2.76	0.99	0.84	0.18 J
Selenium	ug/L	1.0 U	1.0 U	1.0 U	0.2 J
Silver	ug/L	0.020 U	0.020 U	0.020 U	0.020 U
Sodium	ug/L	22300	22100	45700	23100
Thallium	ug/L	0.119	0.0101 J	0.0564	0.0032 [
Variadium	ug/L	0.035 J	ر 0.079	0.055 J	0.075 J
Zinc	ug/L	2.16	4.53	0.74	0.36 J
General Chemistry					
Cyanide (amenable)	ug/L	10 U	10 U	4 J	10 U
Cyanide (total)	μg/L	10 U	10 U	4 }	10 U
Field Parameters					
Conductivity	mS/cm	0.875	0.796	0.851	0.552
Dissolved oxygen (DO) ⁽³⁾	mg/L	0.1	1.03	0	-
Oxidation reduction potential (ORP)	millivolts	-98	7	-88	206
рН	s.u.	6.83	7.02	7.27	7.13
Temperature	Deg C	9.3	9.1	9.4	11.1
Turbidity	NTU	<2.69	<4.12	<3.81	<2.01

Notes:

⁽¹⁾ Cleanup criteria identified by MDEQ RRD Op Memo No. 1, updated 3/25/2011, pursuant to 1994 PA 451 as amended.

⁽²⁾Also known as Methyl isobutyl ketone (MIBK)

 $^{^{\}rm OS}$ DO results were not obtained at MW-1015, MW-101D, MW-1-25, MW-102D, MW-103D, MW-104S, MW-104D, MW-55, MW-105D, and MW-106S due to DO meter failure

U - Not present at or above the associated value.

J - Laboratory qualifiers - estimated concentration,

Sample Location:

Sample Identification:

Sample Date: Sample Type:

Michigan Act 451, Part 201 Cleanup Criteria and Part 213 Risk-	MW-101S	MW-101D	MW-1025	MW-102D
based Screening Levels: Residential and Non-Residential Generic	WG-56393-020612-JV-038	WG-56393-020612-JV-037	WG-56393-020612-JV-040	WG-56393-020612-JV-039
Cleanup Criteria (1)	4/27/2012	4/27/2012	4/25/2012	4/25/2012

Sample Type:								
		Residential Drinking	Non-Residential	Groundwater Surface				
	Units	Water"	Drinking Water ^b	Water Interface				
Volatile Organic Compounds			, and the second					
Acetone	μg/L	730	2100	1700	20 U	20 L ¹	20 U	20 U
Benzene	μg/L	5	5	200	0.50 L ¹	0 50 U	0 50 U	0.50 U
Bromodichloromethane	μg/L	80	80	ID	0.50 L [†]	0 50 ∪	0.50 U	0.50 L ⁱ
Bromoform	μg/L	80	80	ID	0 50 U	0.50 U	0.50 U	0.50 U
Bromomethane (Methyl bromide)	μg/L	10	29	35	0.50 L ⁾	0 50 U	0 50 U	0 50 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	13000	38000	2200	20 U	20 U	20 U	20 U
Carbon disulfide	μg/L	800	2300	ID	0.50 L ¹	0 50 ビ	0.50 U	0.50 บ
Carbon tetrachloride	μg/L	5	5	45	0.50 U	0 50 U	0 50 U	0 50 U
Chlorobenzene	μg/L	100	100	25	0 50 U	0.50 U	0 50 U	0 50 U
Chloroethane	μg/L	430	1700	1100	0.50 U	0.50 U	0 50 U	0.50 Li
Chloroform (Trichloromethane)	μg/L	80	80	350	0 50 U	0 50 ∪	0 50 U	0.11 J
Chloromethane (Methyl chloride)	μg/L	260	1100	ID	0.50 U	0.50 U	0 50 U	0.50 L
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	0.2	0.2		2 0 U	20∪	20 U	2.0 U
Dibromochloromethane	μg/L	80	80	ID	0.50 U	0.50 ∪	0.50 U	0 50 U
1,2-Dibromoethane (Ethylene dibromide)	μg/L	0.05	0.05	5.7	2 0 U	2 0 U	2 0 U	2.0 U
1,2-Dichlorobenzene	μg/L	600	600	13	0.50 U	0.50 U	0 50 U	0 50 U
1,3-Dichlorobenzene	μg/L	6.6	19	28	0 50 U	0 50 U	0 50 U	0.50 Li
1,4-Dichlorobenzene	μg/L	<i>7</i> 5	<i>7</i> 5	17	0.50 U	0.50 U	0 50 U	0 50 U
Dichlorodifluoromethane (CFC-12)	μg/L	1700	4800	ID	0 50 U	0 50 U	0 50 U	0.50 U
1,1-Dichloroethane	μg/L	880	2500	740	0.50 €	0.50 U	0.50 U	0.50 U
1,2-Dichloroethane	μg/L	5	5	360	0 50 U	0 50 LI	0.50 U	0.50 L·
1,1-Dichloroethene	μg/L	7	7	130	0.50 U	0.50 ∪	0.50 U	0.50 U
cis-1,2-Dichloroethene	μg/L	70	70	620	0 50 U	0 50 U	0 50 U	0.50 L ^r
trans-1,2-Dichloroethene	μ g /L	100	100	1500	0.50 U	0 50 U	0 50 U	0 50 U
1.2-Dichloropropane	μg/L	5	5	230	0 50 U	0.50 U	0 50 U	0.50 L ¹
cts-1,3-Dichloropropene	μg/L	-	-	-	0.50 U	0 50 U	0.50 L!	0.50 Li
trans-1,3-Dichloropropene	μg/L	-	-	-	0 50 U	0.50 U	0 50 L ¹	0 50 U
Ethylbenzene	μg/L	74	74	18	0.50 む	0 50 ∪	0.50 U	0 50 ビ
2-Hexanone	μg/L	1000	2900	ID	20 U	20 U	20 U	20 U
Isopropyl benzene	μg/L	800	2300	28	2 0 U	2 0 L!	2 0 L'	2 0 U
Methyl tert butyl ether (MTBE)	μg/L	40	40	7100	0 50 U	0 50 U	0 50 U	0.50 U
4-Methy I-2-pentanone (2)	μg/L	1800	5200	ID	2 0 U	20 U	20 U	20 ل
Methylene chloride	μg/L	5	5	1500	2 0 L ^J	2 0 U	2.0 U	2.0 L
Styrene	μg/L	100	100	80	0.50 L/	0 50 U	0 50 Li	0.50 U
1,1,2,2-Tetrachloroethane	μ g /L	8.5	35	78	0 50 L ⁾	0.50 L!	0.50 U	0 50 L ^r
Tetrachloroethene	μg/L	5	5	60	0 50 U	0 50 U	0 50 U	0 50 U
Toluene	μg/L	790	79 0	270	0.31 /	0.1e)	0.50 L!	0 11)
1,2,4-Trichlorobenzene	μg/L	70	70	99	2.0 U	2 () U	20 U	2 D L
1,1,1-Trichloroethane	μg/L	200	200	89	050 し	0 50 L	0 50 U	0.50 L
1,1,2-Trichloroethane	μg/L	5	5	330	0 50 LI	0.50 U	0.50 U	0 50 U
Trichloroethene	μg/L	5	5	200	0.50 L!	0.50 U	0.50 L/	0 50 U
Trichlorofluoromethane (CFC-11)	μg/L	2600	7300	-	0.50 L ^J	0 50 U	0.50 L	0.50 L'
Vinyl chloride	μ g /L	2	2	13	0.50 ビ	0.50 U	0.50 L	0.50 U
o-Xylene	μg/L	280	280	41	0 50 U	0.50 U	0.50 U	0.50 L
m&p-Xylenes	μg/L				0.50 ∪	0 50 L'	0 50 U	0 50 L ¹

Office Townshif, Michigan									
Sample Location: Sample Identification: Sample Date: Sample Type:					MW-1015 WG-56393-020612-JV-038 4/27/2012	MW-101D WG-56393-020612-JV-037 4/27/2012	MW-1025 WG-56393-020612-JV-040 4/25/2012	MW-102D WG-56393-020612-JV-039 4/25/2012	
Volatile Organic Compounds Metals	Units	Residential Drinking Water	Non-Residential Drinking Water ^b	Groundwater Surface Water Interface '					
Cyanide (amenable)	ug/L	200	200		10 U	10 U	10 U	10 N	
Cyanide (total)	ug/L	200	200	5.2	10 Ü	10 U	10 U	10 U	
Magnesium	ug/L	400000	1100000		25400	24300	26800	22800	
Mercury	ug/L	2	2	0.0013	0 00129	0.00147	0 00074 J	0 00084)	
Sodium	ug/L	120000	350000		24800	26400	23600	21200	
PCBs									
Aroclor-1016 (PCB-1016)	ug/L				0 020 U	0 020 U	0 0 20 U	0 020 U	
Aroclor-1221 (PCB-1221)	ug/L				0 040 ₺	0 040 U	0.040 U	0.040 U	
Aroclor-1232 (PCB-1232)	را ربع				0 020 ∪	0 020 し	0 020 U	0 020 Li	
Aroclor-1242 (PCB-1242)	ug/L				0.020 ₺	0.020 U	0.020 U	0 020 U	
Aroclor-1248 (PCB-1248)	uε,/L				0 020 L!	0 020 U	0.020 L ⁱ	0 020 U	
Aroclor-1254 (PCB-1254)	ug/L				0.020 Li	0 020 L ¹	D 020 L1	8.020 ∪	
Aroclor-1260 (PCB-1260)	ug/L				0 D20 U	0 020 U	0 020 じ	0 020 U	
Total PCBs	ug/L	0 5	0.5	0 2	ND	ND	ND	ND	
Field Parameters									
Conductivity	mS/cm	-	-	-	0.779	0.774	0.836	0.785	
Dissolved oxygen (DO)	mg/L	-	-	-	5.21	4.36	1.92	2.53	
Oxidation reduction potential (ORP)	millivolts	-	-	-	230	227	81	209	
pH	s.u.	6.5 - 8.5	6.5 - 8.5	-	7.23	7.18	6.71	6 88	
Temperature	Deg C	-	-		9.3	10.8	10 9	11 9	
Turbidity	NTU	-	-	_	< 0.80	< 0.98	•• ,	< 0.63	
					*	****		30.00	

Notes.

- Cleanup criteria identified by MDEQ RRD Op Memo
 No. 1, updated 3/25/2011, pursuant to 1994 PA 451 as amended.
- a Residential Drinking Water
- Non-Residential Drinking Water
- Groundwater Surface Water Interface
- Also known as Methyl isobutyl ketone (MIBK).
- Not present at or above the associated value.
- J Laboratory qualifiers estimated concentration.

OTSEGO TOWNSHIP, MICHIGAN								
Sample Location: Sample Identification: Sample Date: Sample Type:		MW-103D WG-56393-020712-JV-043 4/25/2012	MW-1045 WG-56393-020712-JV-044 4/25/2012	MW-104D WG-56393-020712-JV-046 4/25/2012 Duplicate	MW-104D WG-56393-020712-JV-045 4/25/2012	MW-105S WG-56393-020712-JV-048 4/25/2012	MW-105D WG-56393-020712-JV-047 4/25/2012	
	Units							
Volatile Organic Compounds	Cinits							
	/ 1	2011	20.1:	20 L·	20 U	20 L ¹	20 L!	
Acetone	μg/L	20 U	20 U 0 50 U	0 50 U	0 50 U	0 50 U	0 50 U	
Benzene	μg/L	0.50 L ³			0.50 U	0 50 ₺	0 50 U	
Bromodichloromethane Bromoform	μg/L	0 50 U 0 50 U	0 50 U 0 50 U	0.50 U 0.50 U	0.50 L ¹	0 50 U	0.50 Li	
Bromotorm Bromomethane (Methyl bromide)	μg/L	0 50 U	0.50 ∪	0 50 U	0.50 L ¹	0.50 U	0.50 L ¹	
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L μg/L	20 L ¹	20 U	20 U	20 U	20 U	20 U	
Carbon disulfide	μg/ L μg/ L	0 50 U	0 50 L'	0.50 U	0 50 U	0.50 U	0.50 LI	
Carbon tetrachloride	μg/ C μg/ L	0 50 U	0 50 U	0.50 U	0.50 U	0.50 U	0.50 U	
Chlorobenzene	μg/L μg/L	0.50 U	0 50 U	0.50 U	0.50 U	0.50 L ¹	0 50 L'	
Chloroethane	μg/L μg/L	0.50 U	0 50 U	0.50 U	0 50 U	0.50 U	0.50 L ²	
Chloroform (Trichloromethane)	μg/L	0.13 J	0 50 U	0.50 U	0.50 U	0.50 U	0.50 L'	
Chloromethane (Methyl chloride)	μg/L μg/L	0 50 U	0.10 [0.50 U	0.50 U	0.50 L/	0.50 U	
1,2-Dibromo-3-chloropropane (DBCP)	μg/L μg/L	20 U	2.0 U	20 t	2.0 U	2 0 U	2.0 U	
Dibromochloromethane	μg/L	0.50 U	0.50 U	0 50 U	0 50 U	0.50 ピ	0 50 U	
1,2-Dibromoethane (Ethylene dibromide)	μg/L	2 O L'	2.0 U	200	20 U	2 0 U	2 0 U	
1,2-Dichlorobenzene	μg/L μg/L	0.50 ∪	0 50 U	0 50 U	0.50 U	9.50 U	0,50 U	
1,3-Dichlorobenzene	μg/L	0.50 U	0.50 U	0.50 U	0.50 U	0.50 Li	0.50 U	
1,4-Dichlorobenzene	μg/L μg/L	0 50 U	0.50 U	0.50 U	0 50 U	0.50 レ	0.50 U	
Dichlorodifluoromethane (CFC-12)	μg/L	0.50 U	0 50 U	0.50 L ¹	0 50 U	0.50 U	0.50 U	
1,1-Dichloroethane	μg/L μg/L	0.50 U	0.50 U	0.50 U	0 50 U	0 50 U	0 50 U	
1,2-Dichloroethane	μg/L	0.50 U	0.50 U	0.50 U	0 50 U	0 50 U	0 50 U	
1,1-Dichloroethene	μg/L	0.50 U	0.50 U	0.50 U	0,50 U	0 50 U	0.50 U	
cis-1,2-Dichloroethene	μg/L	0.50 U	0 50 L	0.50 U	0.50 L ¹	0 50 ひ	0.50 U	
trans-1,2-Dichloroethene	μg/L	0.50 U	0.50 U	0.50 U	ถ 50 บ	0.50 U	0 50 U	
1,2-Dichloropropane	μg/L	0 50 U	0 50 U	0.50 L	0 50 U	0.50 レ	0 50 U	
cis-1,3-Dichloropropene	μg/L	0.50 U	0.50 U	0.50 じ	0,50 じ	0.50 U	0.50 し	
trans-1,3-Dichloropropene	μg/L	0 50 U	0.50 U	0.50 U	0.50 U	0.50 ∪	0.50 U	
Ethylbenzene	μg/L	0.50 U	0.50 L!	0.50 U	0.50 U	0.50 U	0 50 U	
2-Hexanone	μg/L	20 L ⁾	20 U	20 U	20 U	20 U	20 U	
lsopropyl benzene	μg/L	2 0 U	20 U	200	2 D U	2.0 L/	20 U	
Methyl tert butyl ether (MTBE)	μg/L	0.50 U	0 50 U	0 50 L ¹	0.50 U	0.50 Li	0 50 L ¹	
4-Methyl-2-pentanone (2)	μg/L	20 U	2 0 U	20 L ^r	20 U	20 U	20 Li	
Methylene chloride	μg/L	20 년	200	2 0 U	20 U	20 U	2.0 U	
Styrene	μg/l.	0 50 U	0 50 U	0 50 U	0 50 U	0 50 U		
1,1,2,2-Tetrachloroethane	μg/L	0.50 U	0 50 Li	0.50 Li	0,50 L ¹	0 50 U	0 50 U 0.50 U	
Tetrachloroethene	μ g /L	0.50 L [†]	0.50 U	0.50 U	0.50 U	0 50 U		
Toluene	μg/L	0 50 U	0.0601	0.50 U	0.17.)	0.060]	0.50 U	
1,2,4-Trichlorobenzene	μg/L	201/	2 0 U	2.0 U	2.0 U	0.060) 2 0 U	0 18 J	
1.1.1-Trichloroethane	μg/L	0 50 U	0.50 Li	0.50 U	0 50 U	0 080 [200	
1.1,2-Trichloroethane	μg/L	0 50 U	0.50 U	0.50 U	0 50 U	0.50 U	0 090]	
Trichloroethene	μg/L	0 50 じ	0.50 L ⁻	0.50 U	0,50 U		0 50 U	
Trichlorofluoromethane (CFC-11)	μg/L	0.50 L ¹	0.50 U	0 50 U	0.50 U	0 50 U 0.50 U	0 50 U	
Viuvi chloride	μg/L	0 50 L	0.50 U	0 50 U	0.50 U	0.50 U	0 50 U	
o-Xylene	μg/L	0 50 ビ	0.50 L!	0 50 U	0 50 U	0 50 U	0.50 U 0.50 U	
m&p-Xylenes	μg/L	0 50 니	0.50 ∪	0.50 U	0,50 U	0.50 U	0.50 U	
			* *	40 C	0.00 €	0.00	U 50 U	

SUMMARY OF APRIL 2012 GROUNDWATER ANALYTICAL RESULTS 12th STREET LANDFILL

OTSEGO TOWNSHIP, MICHIGAN

Sample Location: Sample Identification: Sample Date: Sample Type:		MW-103D WG-56393-020712-JV-043 4/25/2012	MW-104S WG-56393-020712-JV-044 4/25/2012	MW-104D WG-56393-020712-JV-046 4/25/2012 Duplicate	MW-104D WG-56393-020712-JV-045 4/25/2012	MW-1055 WG-56393-020712-JV-048 4∕25/2012	MW-105D WG-56393-020712-JV-047 4/25/2012
	Units						
Volatile Organic Compounds Metals							
Cyanide (amenable)	ug/L	10 U	4 J	10 U	10 Li	10 U	10 L
Cyanide (total)	ug,'L	10 N	41	10 U	10 U	10 U	10 U
Magnesium	ug,/L	23200	23200	22600	23100	28600	25100
Mercury	ug/L	0 00075 J	0.00073)	0 00061 }	0 00064 J	0 00047 J	0.30088 J
Sodium	ug/L	21700	22100	21000	21900	25600	23600
PCBs							
Aroclor-1016 (PCB-1016)	ug/L	0.020 U	0 020 L	0 020 L'	0.020 U	0 020 L)	C 020 U
Aroclor-1221 (PCB-1221)	ug/L	0 040 LI	0 040 U	0.040 L	0 040 L ¹	0 040 U	0 040 U
Aroclor-1232 (PCB-1232)	ug/L	0.0 2 0 U	0 020 U	0.020 L	0 020 U	0 020 L ¹	0 020 U
Aroclor-1242 (PCB-1242)	ug/L	0 020 L'	0 0 2 0 L'	0 020 L	0 020 U	0.020 U	0 020 U
Aroclor-1248 (PCB-1248)	ug/L	0.020 U	0 0 2 0 U	0 020 L'	0.020 L ¹	0 020 L ⁱ	0.020 U
Aroclor-1254 (PCB-1254)	ug/L	0 020 U	0 020 U	0.020 し	0 020 U	0 020 じ	0.020 U
Aroclor-1260 (PCB-1260)	ug/L	0 020 U	0 020 U	0 020 U	0 020 U	0.020 L'	0 020 U
Total PCBs	ug/L	ND	ND	ND	ND	ND	ND
Field Parameters							
Conductivity	mS/cm	0.612	0.739	0.734	0.734	0 928	0.881
Dissolved oxygen (DO)	mg/L	1.95	2.67	2.74	2.74	.93	1.80
Oxidation reduction potential (ORP)	millivolts	230	229	233	233	81	96
pН	s.u.	5.76	7.07	7.06	7.06	6.75	6.77
Temperature	Deg C	13 35	13.3	13.1	13.1	12.8	13.2
Turbidity	NTU	< 2.00	< 1.0)	< 2.77	<2.77	< 0.64	<4.58

Notes

- Cleanup criteria identified by MDEQ RRD Op Memo No 1, updated 3/25/2011, pursuant to 1994 PA 451 as (D) amended.
- Residential Drinking Water
- Non-Residential Drinking Water
- Groundwater Surface Water Interface
- Also known as Methyl isobutyl ketone (MIBK).
- Not present at or above the associated value.
- Laboratory qualifiers estimated concentration.

			OTSEGO TOWNSHIT, N	HEHIGAN			
Sample Location:		MW-1065	MW-106D	MW-107S	MW-108S	MW-108D	MW-109D
Sample Identification:		WG-56393-020712-JV-050	WG-56393-020712-JV-049	WG-56393-020812-JV-051	WG-56393-020812-JV-053	WG-56393-020812-JV-052	WG-56393-020612-JV-041
Sample Date:		4/26/2012	4/26/2012	4/26/2012	4/26/2012	4/26/2012	4/26/2012
Sample Type:			,,		4 ,	, -,	4 - 4 - 4
Sample Type:							
	Units						
Volatile Organic Compounds							
,							
Acetone	μg/L	20 U	2 0 U	20 U	20 ∪	20 U	20 U
Benzene	μg/L	0 50 L ^I	0 50 U	0.50 U	0 50 L ^j	0 50 U	0.50 to
Bromodichloromethane	μg/L	0 50 し	0.50 L ¹	0.50 U	0.50 L	0 50 U	0.50 U
Bromoform	μg/L	0 50 U	0 50 U	0.50 U	0.50 ∪	0 50 U	0 50 U
Bromomethane (Methyl bromide)	μg/L	0 50 U	0.50 €	0 50 じ	0 50 U	0 50 L'	0.50 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	20 U	20 U	20 U	20 L ⁱ	20 U	20 LI
Carbon disulfide	μg/L	0.50 U	0 50 Li	0 50 U	0 50 L ⁱ	0 50 L'	0.50 U
Carbon tetrachloride	μg/L	0.50 U	0 50 ∪	0 50 L ⁱ	0.50 し	0 50 U	0 50 U
Chlorobenzene	μg/L	0 50 L	0 50 U	0.50 ∪	0 50 ∪	0.50 U	0 50 し
Chloroethane	μg/L	0.50 U	0 50 L ⁾	0.50 L!	0.50 U	0.50 U	0 50 L
Chloroform (Trichloromethane)	μg/L	0 50 LI	0.50 L/	0,50 U	0 50 U	0.50 U	0.50 LI
Chloromethane (Methyl chloride)	μg/L	0 50 U	0.50 U				
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	2.0 U	2 0 U	2 0 U	2.0 U	20 ს	2.0 U
Dibromochloromethane	μg/L	0.50 じ	0 50 U	0.50 L	0 50 U	0.50 U	0.50 U
1,2-Dibromoethane (Ethylene dibromide)	μg/L	2.0 し	2 0 U	200	2 0 L'	20 U	2.0 L
1,2-Dichlorobenzene	μg/L	0.50 Li	0.50 L/	0.50 L ^J	0 50 レ	0 50 U	0.50 U
1,3-Dichlorobenzene	μg/L	0.50 L ¹	0.50 U	0.50 U	0.50 U	0 50 U	0.50 U
1,4-Dichlorobenzene	μg/L	0 50 U	0.50 U	0.50 U	0 50 U	0.50 ひ	0 50 Li
Dichlorodifluoromethane (CFC-12)	μg/L	0.50 U	0 50 LI	0 50 U	0 50 L'	0.50 ひ	0 50 Li
1,1-Dichloroethane	μg/L	0 50 L	0 50 L'	0 50 U	0 50 U	0.30 2	0.50 U
1,2-Dichloroethane	μg/L	0 50 L	0.50 U	0.50 L!	0.50 U	0.50 Li	0.50 L ¹
1,1-Dichloroethene	μg/L	0 50 U	0.50 U	0.50 U	0.50 U	0.50 U	0 50 U
cis-1,2-Dichloroethene	μg/L	0.50 L/	0 50 U	0 50 U	0.50 U	0.50 U	0.50 L'
trans-1,2-Dichloroethene	μg/L	0 50 し	0 50 U	0.50 ∪	0.50 U	0 50 U	0.50 C
1,2-Dichloropropane	μg/L	0 50 U	0 50 U	0.50 U	0.50 U	0.50 U	0.50 L ¹
cis-1,3-Dichloropropene	μg/L	0 50 U	0 50 L	0.50 U	0.50 U	0.50 U	0.50 U
trans-1,3-Dichloropropene	μg/L	0.50 LI	0 50 L ¹	0.50 U	0.50 L ¹	0.50 U	050 U
Ethylbenzene	μg/L	0 50 U	0 50 U	0 50 U	0 50 U	0.50 L ¹	0 50 U
2-Hexanone	μg/L	20 U	20 U	20 L'	20 U	20 U	20 U
Isopropyl benzene	μg/L	2.0 U	2 0 L/	20 L	200	200	20 U
Methyl tert butyl ether (MTBE)	μg/L	0 50 し	0.50 U	0.50 U	0 50 U	050 U	
4-Methyl-2-pentanone (2)	μg/L	20 L!	20 U	20 U			0 50 U
Methylene chloride	μg/L	2.0 U	20 U	2.0 U	20 U	20 U	20 L
Styrene	μg/L	0.50 L [†]	0 50 U	0.50 U	200	2.0 ∪	2 0 U
1.1,2,2-Tetrachloroethane	μg/L	0.50 ∪	0.50 U		0 50 U	0 50 U	0 50 L ⁱ
Tetrachloroethene	μg/L	0.50 U	0.50 U	0.50 U	0 50 U	0 50 U	0.50 U
Toluene	μg/L μg/L	0.14 [0.50 U	0.50 Li	0 50 L'	0 50 し
1,2,4-Trichlorobenzene	μg/L	2.0 L)	0.13 J	0 13 J	0 2 3 J	0 21 J	0 50 ∪
1,1,1-Trichloroethane	μg/L μg/L	0.50 U	200	2.0 U	2.0 U	20 U	2.0 U
1,1,2-Trichloroethane	μg/L μg/L		0 50 U	0 50 L ^r	0.50 Li	0.14	0 50 ビ
Trichloroethene	μg/L μg/L	0 50 U	0.50 U				
Trichlorofluoromethane (CFC-11)	_	0.50 U	0.50 Li	0.50 U	0.50 U	0.50 U	0.50 U
Vinyl chloride	μg/L μg/L	0.50 L	0 50 U	0 50 U	0.50 U	0 50 U	0 50 ∪
o-Xylene	μg/L μg/L	0 50 Li	0 50 U	0 50 U	0.50 €	0 50 L ¹	0.50 L ⁱ
m&p-Aylenes	μg/L μg/L	0 50 U 0 50 년	0.50 L/	0 50 L'	0 50 U	0.50 U	0 50 U
	րե/ Լ	0.50 €	0 50 U	0.50 U	0 50 ∪	0 50 U	0 50 U

SUMMARY OF APRIL 2012 GROUNDWATER ANALYTICAL RESULTS 12th STREET LANDFILL

OTSEGO TOWNSHIP, MICHIGAN

			OTSEGO TOWNSHIP, N	IICHIGAN			
Sample Location:		MW-106S	MW-106D	MW-107S	MW-1085	MW-108D	MW-109D
Sample Identification:		WG-56393-020712-JV-050	WG-56393-020712-JV-049	WG-56393-020812-JV-051	WG-56393-020812-JV-053	WG-56393-020812-JV-052	WG-56393-020612-JV-041
Sample Date:		4/26/2012	4/26/2012	4/26/2012	4/26/2012	4/26/2012	4/26/2012
Sample Type:		. ,					
Shimple Lype.							
	Units						
Volatile Organic Compounds							
Metals							
Cyanide (amenable)	ug./L	10 L'	10 L:	10 U	10 U	10 U	10 U
Cyanide (total)	uε/L	10 U	10 L:	10 U	10 U	10 ∪	10 U
Magnesium	ug/L	33400	24600	28200	24300	25900	24700
Mercury	ug/L	0 00119	0.0012	0 00065)	0.00141	0 00079 J	0 00085 1
Sodium	ug/L	25000	26300	22100	23300	11100	22900
PCB5							
Aroclor-1016 (PCB-1016)	ug/L	0.020 ∪	0 020 U	0 020 U	0 020 U	0 0 2 0 U	0 0 2 0 U
Aroclor-1221 (PCB-1221)	ug/L	0 040 U	0 040 U	0 040 U	0 040 U	0.040 U	0.040 ₺
Arocler-1232 (PCB-1232)	ug/L	0 020 U	0 020 Li				
Areclor-1242 (PCB-1242)	ug/L	0 020 U	0 020 L ⁱ	0 020 U	0 020 U	0 020 U	0 020 L-
Aroclor-1248 (PCB-1248)	ug/L	0.020 レ	0 020 U	0 020 L ¹	0 020 ビ	0.020 L	0 020 L
Aroclor-1254 (PCB-1254)	ug/L	0.020 U	0 0098 J	0 020 L ⁱ	0.020 U	0 020 U	0 020 L'
Aroclor-1260 (PCB-1260)	ug/L	0.020 U	0 020 U	0 020 U	0 020 U	0.020 ∪	0 020 じ
Total PCBs	ug/L	ND	0.0098 j	ND	ND	ND	ND
Field Parameters							
Conductivity	mS/cm	1 04	0.781	0.933	0.851	0.884	0.764
Dissolved oxygen (DO)	mg/L	.98	3.42	6.38	2.72	1.68	4.12
Oxidation reduction potential (ORP)	millivolts	-59	91	-24	-12	-33	193
pH	s.u.	6.63	7.17	6.84	7.05	7.18	7.17
Temperature	Deg C	11.3	12.5	11.9	11.9	12.3	11.7
Turbidity	NTU	<1.02	<2.98	<0.24	< 0.5	<0.41	<0.35
	NIO	71.02	<u>~</u> .,70	~U 4 4	~0.5	~0.41	<u.33< td=""></u.33<>

Notes

- Cleanup criteria identified by MDEQ RRD Op Memo No. 1, updated 3/25/2011, pursuant to 1994 PA 451 as amended.
- Residential Drinking Water
- h Non-Residential Drinking Water
- Groundwater Surface Water Interface
- Also known as Methyl isobutyl ketone (MIBK).
- U Not present at or above the associated value.
- Laboratory qualifiers estimated concentration.

Attachment 3 Photos Documenting Site Conditions

Attachment 3a

Inspection Photos from King Highway Landfill – OU3

Date Taken: August 7, 2012 by Michael Berkoff

Photo: 1

Gas collection Trench area

Photo: 2 Gas monitoring probes near gas collection trench area

Photo: 3 Permanent marker for extent of OU3 residuals

Photo: 4 Distressed area with methane detection

Photo: 5

Sunken and blocked drainage swale

Photo: 6

Distressed area not yet tested for Methane

Photo: 7

Small burrow holes outside of landfill cover

Photo: 8

Landfill gas vent

Photo: 9 OU3 retention pond area

Photo: 10

Sheet piling at OU3

Attachment 3b

Inspection Photos from Willow Boulevard/A-Site Landfill – OU2

Date Taken: August 7, 2012 by Michael Berkoff

Photo: 11 Sand layer being placed on Residuals at A-Site portion

Photo: 12 Sand layer being placed on Residuals at A-Site portion

Attachment 3c

Inspection Photos from 12th Street Landfill – OU4

Date Taken: August 7, 2012 by Kristi Zakrzewski, MDEQ

Photo: 13 Typical gas monitoring probe

Photo: 14 Typical gas vent through landfill cap

Photo: 15 Stressed vegetation and erosion in southwest surface water swale

Photo: 16 Stressed vegetation and erosion in southwest surface water swale

Photo: 17 Erosion and exposed geotextile liner at southwest surface water swale

Photo: 18 Southern surface water swale

Photo: 19 Southeastern surface water swale with exposed geotextile and erosion

Photo: 20

Current vegetation

Photo: 21

Current vegetation

Photo: 22

Typical monitoring well

Photo: 23 Southern surface water discharge into Kalamazoo River

Photo: 24 Evidence of pedestrian site access for recreational use

Photo: 25 Stressed vegetation and erosion in the northern surface water swale

Photo: 26 Surface water discharge point to wetlands

Photo: 27 Surface water discharge point to wetlands with erosion and sedimentation

Photo: 28 Surface water discharge point to wetlands with erosion and sedimentation

Photo: 29 Repair of erosion at drainage net discharge point at western storm water discharge swale

Photo: 30 Current vegetation on slope near asphalt plant

Attachment 4 Site Inspection Report

Site Inspection Checklist

I. SITE INFORMATION					
Site name: Allied Paper for Angelreeld Koloma 100	Date of inspection: 8/7/12				
Location and Region:	EPA ID: MID00600 7306				
Agency, office, or company leading the five-year review:	Weather/temperature: るのら				
Remedy Includes: (Check all that apply) G Landfill cover/containment G Monitored natural attenuation G Access controls G Groundwater containment G Institutional controls G Vertical barrier walls G Groundwater pump and treatment G Surface water collection and treatment G Other					
Attachments: G Inspection team roster attached	G Site map attached				
II. INTERVIEWS	(Check all that apply)				
1. O&M site manager Gam Griffilm Name Interviewed Cat site Gat office G by phone Phone Problems, suggestions; G Report attached					
2. O&M staff Name Interviewed G at site G at office G by phone Phone Problems, suggestions; G Report attached	Title Date				

Agency MDER Contact List 2 ky 2euski Name Title Date Phone no. Problems; suggestions; G Report attached Agency Contact Name Title Date Phone no. Problems; suggestions; G Report attached Agency Contact Name Title Date Phone no. Problems; suggestions; G Report attached Agency Contact Name Title Date Phone no. Problems; suggestions; G Report attached Date Phone no. Other interviews (optional) G Report attached.	Agency ContactName		
Problems; suggestions; G Report attached Agency	Agency ContactName		
Problems; suggestions; G Report attached Agency	Contact Name		
Problems; suggestions; G Report attached Agency	Name		
Problems; suggestions; G Report attached Agency		Title	_
Name Title Date Phone no. Problems; suggestions; G Report attached Agency Contact Name Title Date Phone no. Problems; suggestions; G Report attached	Problems; suggestions; G Report attached		
Name Title Date Phone no. Problems; suggestions; G Report attached Agency Contact Name Title Date Phone no. Problems; suggestions; G Report attached	Agency		
Name Title Date Phone no. Problems; suggestions; G Report attached Agency Contact Name Title Date Phone no. Problems; suggestions; G Report attached Problems; suggestions; G Report attached	Contact		
Agency Contact Name Title Date Phone no. Problems; suggestions; G Report attached Title Date Phone no.	Name	Title	Date Phone no.
Agency Contact Title Date Phone no. Problems; suggestions; G Report attached			
Name Title Date Phone no. Problems; suggestions; G Report attached			
Name Title Date Phone no. Problems; suggestions; G Report attached	Agency		
Name Title Date Phone no. Problems; suggestions; G Report attached	Contact		
	Name	Title	
Other interviews (optional) G Report attached.	Problems; suggestions; G Report attached		· · · · · · · · · · · · · · · · · · ·
	Other interviews (optional) G Report attack	hed	
	(opinomia) o roporomia		

	III. ON-SITE DOCUMENTS & RECORDS VERIFIED (Check all that apply)					
1.	O&M Documents G O&M manual G As-built drawings G Maintenance logs Remarks	G Readily available G Up to G Readily available G Readily available	G Up to date G Up to date	G N/A G N/A		
2.	Site-Specific Health and Safety Please Contingency plan/emergency resp	an E Readily available conse plan Readily available				
3.	O&M and OSHA Training Recor Remarks_	ds G Readily available	G Up to date	G N/A		
4.	Permits and Service Agreements G Air discharge permit G Effluent discharge G Waste disposal, POTW G Other permits Remarks	G Readily available	G Up to date o date	©N/A		
5.	Gas Generation Records Remarks	-				
6.	Settlement Monument Records Remarks	G Readily available	G Up to date	G N/A		
7.	Groundwater Monitoring Record Remarks	· ·	G Up to date	Ç∕N/A		
8.	Leachate Extraction Records Remarks	G Readily available	G Up to date	⊗N/A		
9.	Discharge Compliance Records G Air G Water (effluent) Remarks	G Readily available G Readily available	G Up to date G Up to date	&N/A C-N/A		
10.	Daily Access/Security Logs Remarks	G Readily available	G Up to date	GAN/A		

	IV. O&M COSTS					
2.	O&M Organization G State in-house G Contractor for G PRP in-house G Contractor for G Federal Facility in-house G Contractor for G Other Dan Mas Not Stanford For Many 1964. O&M Cost Records G Readily available G Up to date G Funding mechanism/agreement in place Original O&M cost estimate	or PRP or Federal Facility EPH has not recoived 0 \$M				
	Total annual cost by year for	review period if available				
	From To Date Total	G Breakdown attached				
	From To Date Total	G Breakdown attached				
	From To Date Total From To	G Breakdown attached Cost G Breakdown attached				
	Date Date Total From To Date Date Total	G Breakdown attached				
3.	A / //-P	During Review Period				
	V. ACCESS AND INSTITUTIONAL CONTROLS GApplicable G N/A					
A. F	encing					
1.	Fencing damaged G Location shown on s Remarks Fency 1994 Comp	ite map Gates secured G N/A Lete - Jenune Not Complete.				
B. O	ther Access Restrictions					
1.	Signs and other security measures G Location shown on site map G N/A Remarks Signs of access Pouts					

C. Inst	itutional Controls (ICs)				
1.	Implementation and enforcement Levely Not	G Yes	TC. GNo	G N/A	
	Site conditions imply ICs not properly implemented Site conditions imply ICs not being fully enforced	G Yes	G No	GN/A GN/A	
	Site conditions imply ics not being fully emolecu	G 1 C3	0110	2011/11	
	Type of monitoring (e.g., self-reporting, drive by) Frequency				_
	Responsible party/agency				-
	~				
	Name Title	Da	te Phon	e no.	
	Reporting is up-to-date	G Yes	G No	G N/A	
	Reports are verified by the lead agency	G Yes	_	G N/A	
	Nepolis are vermou of the load agency				
	Specific requirements in deed or decision documents have been met	G Yes	G No	G N/A	
	Violations have been reported	G Yes	G No	G N/A	
	Other problems or suggestions: G Report attached				
					_
		····-			_
l I					_
2.	Adequacy GICs are adequate GICs are inade Remarks	quate		G N/A	
D. Ge	neral	<u> </u>			
1.	Vandalism/trespassing G Location shown on site map Remarks	vandalism	evident		_
2.	Land use changes on site \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			,	
3.	Land use changes off site G N/A Remarks				
	VI. GENERAL SITE CONDITIONS				=
A. Ro	ads G Applicable C N/A				
1.	Roads damaged G Location shown on site map G Road Remarks	ds adequa	iteG N/A		

	Remarks	
	· VII.	LANDFILL COVERS & Applicable G N/A
L	andfill Surface	Remedy Not complete
	Settlement (Low spots) Areal extent Remarks	G Location shown on site map G Settlement not evident
-	_	G Location shown on site map Widths Depths G Cracking not evident
	Erosion Areal extent Remarks	G Location shown on site map G Erosion not evident Depth
_	Holes Areal extent Remarks	G Location shown on site map G Holes not evident Depth
<u></u>	G Trees/Shrubs (indicate	G Grass G Cover properly established G No signs of stress size and locations on a diagram)
	Alternative Cover (arm Remarks	ored rock, concrete, etc.) G N/A
	Bulges Areal extent Remarks	G Location shown on site map G Bulges not evident Height

8.		G Location shown on site map Areal extent Areal extent
9.	Slope Instability G Sl Areal extent Remarks	
B. Ben	nches G Applic (Horizontally constructed r	
1.	- -	G Location shown on site map G N/A or okay
2.	Bench Breached Remarks	G Location shown on site map G N/A or okay
3.	Bench Overtopped Remarks	G Location shown on site map G N/A or okay
C. Let		able 5N/A n control mats, riprap, grout bags, or gabions that descend down the steep side allow the runoff water collected by the benches to move off of the landfill
1.	Areal extent	G Location shown on site map G No evidence of settlement Depth
2.	Material type	G Location shown on site map G No evidence of degradation Areal extent
3.	Areal extent	G Location shown on site map G No evidence of erosion Depth

4.	Undercutting G Location shown on site map G No evidence of undercutting Areal extent Depth Remarks
5.	Obstructions Type G No obstructions G Location shown on site map Areal extent Size Remarks
6.	Excessive Vegetative Growth G No evidence of excessive growth G Vegetation in channels does not obstruct flow G Location shown on site map Remarks Areal extent
D. Cov	ver Penetrations & Applicable GN/A fluely Not Complete
1.	Gas Vents G Active G Passive G Properly secured/locked G Functioning G Routinely sampled G Good condition G Evidence of leakage at penetration G Needs Maintenance G N/A Remarks
2.	Gas Monitoring Probes G Properly secured/locked G Functioning G Routinely sampled G Good condition G Evidence of leakage at penetration G Needs Maintenance G N/A Remarks
3.	Monitoring Wells (within surface area of landfill) G Properly secured/locked G Functioning G Routinely sampled G Good condition G Evidence of leakage at penetration G Needs Maintenance G N/A Remarks
4.	Leachate Extraction Wells G Properly secured/locked G Functioning G Routinely sampled G Good condition G Evidence of leakage at penetration G Needs Maintenance G N/A Remarks
5.	Settlement Monuments G Located G Routinely surveyed G N/A Remarks_

E. Gas	Collection and Treatment	Applicable (N/A		·
1.	Gas Treatment Facilities G Flaring G Thermal des G Good condition G Needs Main Remarks	tenance 4//	llection for reus	e	
2.	Gas Collection Wells, Manifol G Good condition G Needs Main Remarks		edy No	ot complet	t
3.	Gas Monitoring Facilities (e.g G Good condition G Needs Mair Remarks	tenance		es or buildings)	
F. Cov	ver Drainage Layer	Applicable	G N/A	Renedy	Not Complete
1.	Outlet Pipes Inspected Remarks_	G Functioning	g G.	N/A	
2.	Outlet Rock Inspected Remarks	G Functioning	g G	N/A	
G. De	tention/Sedimentation Ponds	G Applicable	ØN/A		
1.	Siltation Areal extent G Siltation not evident Remarks		h		S N/A
2.	Erosion Areal extent G Erosion not evident Remarks		Depth		
3.	Outlet Works G Fu Remarks	nctioning G N/	A		
4.	Dam G Fu Remarks_	nctioning G N/			

Н.	Retaining Walls	G Applicable	G N/A		
1.	Deformations Horizontal displacement_ Rotational displacement_ Remarks_		Vertical displac	G Deformation not evident cement	
2.	Degradation Remarks	G Location show	•	G Degradation not evident	
I.	Perimeter Ditches/Off-Site Di	scharge	G Applicable	G N/A	
1.	Siltation G Loca Areal extent Remarks	Depth_		not evident	
2.	Vegetative Growth G Vegetation does not im Areal extent Remarks	pede flow Type		G N/A	
3.	Erosion Areal extent Remarks	Depth_		G Erosion not evident	
4.	2	G Functioning			
	VIII. VE	RTICAL BARRI	ER WALLS	G Applicable G N/A	
1.	Settlement Areal extent Remarks	G Location show Depth	vn on site map	G Settlement not evident	
2.	Performance Monitoring Performance not monitoring Frequency_Head differential_Remarks_	tored	G Evidence	e of breaching	

	IX. GROUNDWATER/SURFACE WATER REMEDIES G Applicable ON/A
Α. Ο	G Applicable N/A
1.	Pumps, Wellhead Plumbing, and Electrical G Good condition G All required wells properly operating G Needs Maintenance G N/A Remarks
2.	Extraction System Pipelines, Valves, Valve Boxes, and Other Appurtenances G Good condition G Needs Maintenance Remarks
3.	Spare Parts and Equipment G Readily available G Good condition G Requires upgrade G Needs to be provided Remarks
B. S	urface Water Collection Structures, Pumps, and Pipelines G Applicable GN/A
1.	Collection Structures, Pumps, and Electrical G Good condition G Needs Maintenance Remarks
2.	Surface Water Collection System Pipelines, Valves, Valve Boxes, and Other Appurtenances G Good condition G Needs Maintenance Remarks
3.	Spare Parts and Equipment G Readily available G Good condition G Requires upgrade G Needs to be provided Remarks

C. Tre	atment System	G Applicable	ØN/A	
1.	G Others G Good condition G Sampling ports prop G Sampling/maintena G Equipment properly G Quantity of ground G Quantity of surface	G Oil/water sepa G Carb tion agent, flocculen G Needs Mainte berly marked and fun- nce log displayed and identified water treated annually	aration G Biorem on adsorbers 1) nance ctional I up to date	
2.	Electrical Enclosure G N/A G G Remarks	ood condition G Need	ds Maintenance	nal)
3.				nment G Needs Maintenance
4.	Domarks	and Appurtenances	ds Maintenance	
5.	Treatment Building G N/A G C G Chemicals and equ Remarks	ood condition (esp. r	• •	G Needs repair
6.	Monitoring Wells (p G Properly secured/lo G All required wells l Remarks	cked G Functioning	emedy) G Routinely samp ds Maintenance	led G Good condition G N/A
D. Mo	nitoring Data	Montorin	has Not	stated
1.	Monitoring Data G Is routinely submit	1	G Is of accep	table quality
2.	Monitoring data sugg G Groundwater plum			nt concentrations are declining

D. N	Ionitored Natural Attenuation
1.	Monitoring Wells (natural attenuation remedy) G Properly secured/locked G Functioning G Routinely sampled G Good condition G All required wells located G Needs Maintenance Remarks
·	X. OTHER REMEDIES
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.
	XI. OVERALL OBSERVATIONS
A.	Implementation of the Remedy
	Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.). The remedy 3 Not Jet Campleto. Therefore at the A-Size Journal of the many system has not been put implacly. The could water humber of system has Not been with the evaluate the integrity of the course at Willow by field observations.
В.	Adequacy of O&M
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy. DEMHAS Not stated.

C.	Early Indicators of Potential Remedy Problems
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs, that suggest that the protectiveness of the remedy may be compromised in the future. Confidence Confidence
D.	Opportunities for Optimization Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.

Site Inspection Checklist

1	ORMATION
Site name: Allier from BArabelle Kalanger ON J Location and Region: Kalanazov, MI 5	Date of inspection: 8/7/2012
Location and Region: Kalama 700 MI 6	EPAID: MID 006 007306
Agency, office, or company leading the five-year review:	Weather/temperature:
Access controls G	Monitored natural attenuation Groundwater containment Vertical barrier walls
Attachments: G Inspection team roster attached	
1. O&M site manager Garage Report attached 1. O&M site manager Garage G	no. 734-735-0780
2. O&M staff Name Interviewed G at site G at office G by phone Phone Problems, suggestions; G Report attached	Title Date

office, police department, office of public health or environmental health, zoning office, recorder of deeds, or other city and county offices, etc.) Fill in all that apply.			
Agency MDF Q Contact Kank Kancak Name Problems; suggestions; G Report attached	fried Mangar Title	8/1/2012 577-335- Date Phone no.	
Problems; suggestions; G Report attached			
Agency		.,, 1.,,	
Agency			
ContactName	Title	Date Phone no.	
Problems; suggestions; G Report attached			
Agency			
Contact			
ContactName	Title	Date Phone no.	
Problems; suggestions; G Report attached			
Agency			
Contact			
Name	Title	Date Phone no.	
Problems; suggestions; G Report attached			
Other interviews (optional) G Report attack	hed.		
			

	III. ON-SITE DOCUMENTS			
	O&M Documents ©O&M manual G R	Readily available G Up to	o date G N/A	L
	As-built drawings	G Readily available		G N/A
	Maintenance logs	G Readily available	G Up to date	G N/A
	Remarks Allare draft.	None are at site.		
	Site-Specific Health and Safety Plan	G Readily available	©Up to date	G N/A
	Contingency plan/emergency response Remarks Not A 5.14.	se plan G Readily available	Up to date	G N/A
_	O&M and OSHA Training Records Remarks ルンナムナラは		① Ip to date	G N/A
	Permits and Service Agreements			
	G Air discharge permit	G Readily available		G)\/A
	G Effluent discharge	= 1100011, 0.0110010		ØN/A
	G Waste disposal, POTW G I	Readily available G Up t	o date 🐧 N/A	A
				C 37/4
	G Other permits	G Readily available	G Up to date	G N/A
	G Other permits Remarks	G Readily available	G Up to date	G N/A
	G Other permits Remarks Gas Generation Records Remarks Jandely record			
	Remarks	Readily available Opt	o date G N/A	\ \ \
	Gas Generation Records Gas Generation Records Gas Generation Records Gas Generation Records	Readily available Cop to the second s	o date G N/A	A GN/A
-	Gas Generation Records Remarks Jungle-ly Settlement Monument Records Remarks Groundwater Monitoring Records	Readily available Cop to the second s	G Up to date	GN/A
	Gas Generation Records Remarks Settlement Monument Records Remarks Groundwater Monitoring Records Remarks Leachate Extraction Records Remarks Discharge Compliance Records	Readily available Cop of the South of the So	G Up to date	GN/A
	Gas Generation Records Remarks Settlement Monument Records Remarks Groundwater Monitoring Records Remarks Leachate Extraction Records Remarks Discharge Compliance Records G Air	G Readily available G Readily available G Readily available G Readily available	G Up to date	GN/A
	Gas Generation Records Remarks Settlement Monument Records Remarks Groundwater Monitoring Records Remarks Leachate Extraction Records Remarks Discharge Compliance Records	G Readily available G Readily available G Readily available G Readily available	G Up to date G Up to date G Up to date	A GN/A

		<u>_</u>	V. O&M COSTS	
1.	O&M Organization G State in-house G PRP in-house G Federal Facility in G Other	G ()	Contractor for State Contractor for PRP Contractor for Federa	al Facility
2	O&M Cost Records & Readily available G Funding mechanis Original O&M cost	GUp to date m/agreement in plestimate		
3.	From Date From Total	Date Date	lation of Jas	G Breakdown attached Review Period Trench wllestim sysku.
A. Fe				CODS Grapheable Grant
		,-		
1.	Fencing damaged Remarks	& Location	shown on site map	G Gates secured G N/A
B. Ot	ther Access Restriction	ns	-	
1.	Signs and other see Remarks 5,3	curity measures		nown on site map G N/A

. Ins	stitutional Controls (ICs)			
١.	Implementation and enforcement			
	Site conditions imply ICs not properly implemented	G Yes	G No	&N/A
	Site conditions imply ICs not being fully enforced	G Yes	G No	€N/A
	Type of monitoring (e.g., self-reporting, drive by)			
	FrequencyResponsible party/agency			
	~ ·			
	Contact Name Title	Da	ite Phon	e no.
	Reporting is up-to-date	G Yes	G No	G N/A
	Reports are verified by the lead agency		G No	G N/A
	Specific requirements in deed or decision documents have been met	G Yec	G No	G N/A
	Violations have been reported		G No	G N/A
	Other problems or suggestions: G Report attached		1,0	4 %
•	Adequacy G ICs are adequate G ICs are inade Remarks			N/A
	Remarks			
D. G	Remarks			
D. G	Remarks	vandalism	ı evident	
D. Go	Remarks General Vandalism/trespassing G Location shown on site map G-Nov	vandalism	ı evident	
2. D. G ₀	Remarks Vandalism/trespassing G Location shown on site map Remarks Land use changes on site G N/A	vandalism	ı evident	
D. G 1.	Remarks Vandalism/trespassing G Location shown on site map Remarks Land use changes on site G N/A Remarks Land use changes off site G N/A	vandalism	ı evident	
D. G 1.	Remarks Vandalism/trespassing G Location shown on site map Remarks Land use changes on site G N/A Remarks Land use changes off site G N/A Remarks VI. GENERAL SITE CONDITIONS	vandalism	ı evident	

B. Ot	B. Other Site Conditions				
	Remarks				
	VII. LANDFILL COVERS & Applicable G N/A				
A. La	andfill Surface				
1.	Settlement (Low spots) Areal extent foculized Remarks a small pit of settlement on site map G Settlement not evident Depth for shallow. Remarks a small pit of settlement on drainage swale.				
2.	Cracks G Location shown on site map Cracking not evident Lengths Remarks				
3.	Erosion G Location shown on site map Erosion not evident Areal extent Depth Remarks only erosion in only ite 1 com nem gas well 1.				
4.	Holes G Location shown on site map Holes not evident Areal extent Depth Remarks				
5.	Vegetative Cover & Grass & Cover properly established G No signs of stress G Trees/Shrubs (indicate size and locations on a diagram) Remarks Ame Again Adven. Aharmin map.				
6.	Alternative Cover (armored rock, concrete, etc.) & N/A Remarks				
7.	Bulges G Location shown on site map Bulges not evident Areal extent Height Remarks				
L					

8.	Wet Areas/Water Damage G Wet areas G Ponding G Seeps G Soft subgrade Remarks	
9.	Areal extent	G Location shown on site map SNo evidence of slope instability
B. Be	(Horizontally constructed mounds	N/A of earth placed across a steep landfill side slope to interrupt the slope of surface runoff and intercept and convey the runoff to a lined
1.	Flows Bypass Bench Remarks	G Location shown on site map
2.	Bench Breached Remarks	G Location shown on site map
3.		G Location shown on site map
C. L		e N/A ol mats, riprap, grout bags, or gabions that descend down the steep side the runoff water collected by the benches to move off of the landfill llies.)
1.	Settlement G Local Areal extent Remarks	ation shown on site map G No evidence of settlement Depth
2.	Material type	Areal extent G No evidence of degradation
3.	Areal extentRemarks	ation shown on site map G No evidence of erosion Depth

4.	Undercutting G Location shown on site map G No evidence of undercutting Areal extent Depth Remarks
5.	Obstructions G Location shown on site map Size Remarks
6.	Excessive Vegetative Growth G No evidence of excessive growth G Vocatation in channels does not obstruct flow G Location shown on site map Remarks Areal extent Remarks Area extent Remarks
D. C	Cover Penetrations Applicable G N/A
1.	Gas Vents Gas Ve
2.	Gas Monitoring Probes © Properly secured/locked © Functioning G Routinely sampled © Good condition G Evidence of leakage at penetration G Needs Maintenance G N/A Remarks
3.	Monitoring Wells (within surface area of landfill) Properly secured/locked & Functioning G Routinely sampled G Good condition G Evidence of leakage at penetration G Needs Maintenance G N/A Remarks_
4.	Leachate Extraction Wells G Properly secured/locked G Functioning G Routinely sampled G Good condition G Evidence of leakage at penetration G Needs Maintenance N/A Remarks
5.	Settlement Monuments G Located G Routinely surveyed N/A Remarks

E. Gas Collection and Treatment & Applicable -5 N/A
1. Gas Treatment Facilities G Flaring G Thermal destruction G Collection for reuse G Good condition G Needs Maintenance Remarks
2. Gas Collection Wells, Manifolds and Piping trench G Good condition G Needs Maintenance Remarks all indications that it in josed Condition on data indicate it fundioning.
3. Gas Monitoring Facilities (e.g., gas monitoring of adjacent homes or buildings) G Good condition G Needs Maintenance ON/A Remarks
F. Cover Drainage Layer Applicable G N/A
1. Outlet Pipes Inspected Functioning G N/A Remarks Same price water in the currently under
2. Outlet Rock Inspected Functioning G N/A Remarks
G. Detention/Sedimentation Ponds & Applicable G N/A
1. Siltation Areal extent Depth G N/A Siltation not evident Remarks
2. Erosior Areal extent Depth Erosion not evident Remarks
3. Outlet Works Remarks with with giests detenting and.
4. Dam & Functioning G N/A Remarks

				
H. Ret	aining Walls	G Applicable	G N/A	
1.	Deformations Horizontal displacement_ Rotational displacement_ Remarks		Vertical displace	Deformation not evident ement
2.	Degradation Remarks			Degradation not evident
I. Peri	meter Ditches/Off-Site Di	scharge	G Applicable	&N/A
1.	Areal extent	ion shown on site Depth		not evident
2.	Vegetative Growth G Vegetation does not im Areal extent Remarks	pede flow Type		G N/A
3.	Erosion Areal extent Remarks	Depth_		G Erosion not evident
4.	Discharge Structure Remarks	G Functioning		
	VIII. VEI	RTICAL BARRII	ER WALLS	opplicable &N/A
1.	Settlement Areal extent Remarks	G Location show Depth	n on site map	Settlement not evident
2.	TT 1 1'00 .11		G Evidence	of breaching

OSWER No. 9355.7-03B-P

	IX. GROUNDWATER/SURFACE WATER REMEDIES G Applicable G N/A
A. G	roundwater Extraction Wells, Pumps, and Pipelines G Applicable N/A
1.	Pumps, Wellhead Plumbing, and Electrical G Good condition G All required wells properly operating G Needs Maintenance G N/A Remarks
2.	Extraction System Pipelines, Valves, Valve Boxes, and Other Appurtenances G Good condition G Needs Maintenance Remarks
3.	Spare Parts and Equipment G Readily available G Good condition G Requires upgrade G Needs to be provided Remarks
B. Su	rface Water Collection Structures, Pumps, and Pipelines G Applicable N/A
1.	Collection Structures, Pumps, and Electrical G Good condition G Needs Maintenance Remarks
2.	Surface Water Collection System Pipelines, Valves, Valve Boxes, and Other Appurtenances G Good condition G Needs Maintenance Remarks
3.	Spare Parts and Equipment G Readily available G Good condition G Requires upgrade G Needs to be provided Remarks

C. Tr	eatment System	G Applicable	ØN/A	
1.	Treatment Train (Cl G Metals removal G Air stripping G Filters	G Oil/water sepa G Carbo	ration G Bioreme on adsorbers	
	G Additive (e.g., chel	G Needs Mainte oerly marked and fund nee log displayed and identified water treated annually	nance ctional up to date	
2.	Domonto	s and Panels (proper food condition G Need	ls Maintenance	
3.	Tanks, Vaults, Stora G N/A G C Remarks	Good condition G Prop		ment G Needs Maintenance
4.	Discharge Structure G N/A G C Remarks	Good condition G Need	ls Maintenance	
5.		(s) Good condition (esp. r ipment properly store		G Needs repair
6.	G Properly secured/lo G All required wells	_	G Routinely sampleds Maintenance	ed G Good condition G N/A
·	onitoring Data	· · · · · · · · · · · · · · · · · · ·		
1.	Monitoring Data G is routinely submit	ted on time	G Is of accept	able quality
2.	Monitoring data sugg G Groundwater plum	gests: e is effectively contai	No Plame ned G Contaminar	at concentrations are declining

D. N	Aonitored Natural Attenuation
1.	Monitoring Wells (natural attenuation remedy) G Properly secured/locked G Functioning G Routinely sampled G Good condition G All required wells located G Needs Maintenance
	X. OTHER REMEDIES
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.
_	XI. OVERALL OBSERVATIONS
A.	Implementation of the Remedy
	Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.). The land f. M. Cover in senerally in good and it in fly and and it in for Other Strusted over when the drawing walle. The will be completed fall 2012.
В.	Adequacy of O&M
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy. Oth would be as led by help; my site documents and plans in the sheel of the propert. At would improve the consistency of the linguistimated by heaving setting a standard the sheet of the linguistimated and the standard the sheet of the linguistimated the sheet of the linguistimated and the sheet of the linguistimated the sheet of the linguistic that the sheet of the linguistimated the sheet of the linguistim

C.	Early Indicators of Potential Remedy Problems
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs, that suggest that the protectiveness of the remedy may be compromised in the future. a Conflet Masted area have here here, here field and that the protectiveness of the remedy may be compromised in the future. A conflet Masted area have here here, here here here here here he
D.	Opportunities for Optimization
	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy. Manifold by having all drifts Jens 12 site plant on location.

Site Inspection Checklist

I. SITE INFORMATION						
Site name: All Many Protected Halings 12th Date of inspection: 8/7/12						
Location and Region: flanwell, MI Street EPA ID: MID 006 00 7306						
Agency, office, or company leading the five-year review: EPA Weather/temperature:						
Remedy Includes: (Check all that apply)						
Landfill cover/containment G I	Monitored natural attenuation					
G Access controls G G	Groundwater containment					
© Institutional controls G V	/ertical barrier walls					
G Groundwater pump and treatment						
G Surface water collection and treatment						
G Other						
Attachments: G Inspection team roster attached	G Site map attached					
II. INTERVIEWS	(Check all that apply)					
1. O&M site manager						
Name	Title Date					
Interviewed G at site G at office G by phone Phone	no					
Problems, suggestions; G Report attached						
2. O&M staff Jodie Dembowske Name	8/7/12					
Name	Title Date					
Interviewed at site G at office G by phone Phone	no					
Problems, suggestions; G Report attached						

Local regulatory authorities and response office, police department, office of public he deeds, or other city and county offices, etc.)	alth or environmental he	Tribal offices, emergency responalth, zoning office, recorder of
Agency MDER Contact KNH Zukrzewski Name Problems; suggestions; G Report attached		
Agency Contact Name		Date Phone no.
Problems; suggestions; G Report attached		
Agency ContactName	Title	Date Phone no.
Problems; suggestions; G Report attached		
Agency		Date Phone no.
Other interviews (optional) G Report attac	hed.	

	III. ON-SITE DOCUMENTS &	RECORDS VERIFIED (Check all that appl	y)
1.	G As-built drawings	adily available G Up t G Readily available G Readily available	G Up to date	_ ~ ~
2.	Site-Specific Health and Safety Plan Contingency plan/emergency response Remarks A OCA CAR	Readily available		
3.	O&M and OSHA Training Records Remarks at focal CRA	Readily available	G Up to date	G N/A
4.	Permits and Service Agreements G Air discharge permit G Effluent discharge G Waste disposal, POTW G Other permits Remarks	adily available G Up G Readily available	G Up to date to date G N/A	
5.	Gas Generation Records G Re Remarks	-	to date G N/A	121
6.	Settlement Monument Records Remarks	<u> </u>	G Up to date	GN/A
7.	Groundwater Monitoring Records Remarks	Readily available	G Up to date	G N/A
8.	Leachate Extraction Records Remarks	G Readily available	G Up to date	GN/A
9.	Discharge Compliance Records G Air G Water (effluent) Remarks	G Readily available G Readily available	G Up to date G Up to date	G N/A
10.	Daily Access/Security Logs Remarks D, NH 9x13+.	G Readily available	G Up to date	ØN/A

				IV. O&M COSTS	
		house nouse Facility in-hou		G Contractor for State Contractor for PRP G Contractor for Federal	
	O&M Cos G Readily G Funding	st Records available , mechanism/a	G Up to	Of Mplum in place	not yet approved.
	Original C			G Brea	
		101	ai annuai c	cost by year for review per	lod ii avaliable
	From	To	Date	Total cost	G Breakdown attached
	From	To	Date	Total cost	G Breakdown attached
		To	Date	Total cost	G Breakdown attached
		To Date	Date	Total cost	G Breakdown attached
	From	Date To	Date	Total cost	G Breakdown attached
3.				h O&M Costs During Re	eview Period
	1	V. ACCESS	AND INST	FITUTIONAL CONTRO	OLS Applicable G N/A
A. Fe	encing				
	Fencing of Remarks	aceess		ntion shown on site map beed to be evelua	G Gates secured G N/A tell pedest
B. O	ther Access	Restrictions			
1.		d other securi	ty measur	GES G Location sho	wn on site map G N/A

C. Inst	itutional Controls (ICs)					
1.	Implementation and enformation Site conditions imply ICs in Site conditions imply ICs in Type of monitoring (e.g., see Section 2).	not properly implemented not being fully enforced	n	G Yes	g No g No	G N/A G N/A
	Responsible party/agency Contact Down Danhans Name	EPA, MOER ske Projec	CLA t Coordinator	Da	te Phone	e no.
	Reporting is up-to-date Reports are verified by the	lead agency		G Yes G Yes	G No G No	GN/A GN/A
	Specific requirements in d Violations have been repo Other problems or suggest access in when	rted	i ,	Yes GYes E/A	GNO GNO - Z W	G N/A G N/A
2.	Adequacy Remarks	G ICs are adequate	G ICs are inadequ	ate		G N/A
D. Ger	neral					
1.	Vandalism/trespassing Remarks Min Mulik No William World	GLocation shown on site whent of small damage.	map G No var			lenglfill
2.	Land use changes on site Remarks	G N/A				
3.	Land use changes off site Remarks NML	eG N/A				
		VI. GENERAL SITE	CONDITIONS			
A. Roa	ads G Applicable	G N/A				
1.	Roads damaged Remarks	G Location shown on site	map G Roads	adequa	iteG N /A	

B. O	ther Site Conditions
	Remarks
	VII. LANDFILL COVERS Applicable G N/A
A. L	andfill Surface
1.	Settlement (Low spots) Areal extent Remarks G Location shown on site map Settlement not evident Depth Remarks
2.	Cracks G Location shown on site map Lengths Nemarks G Location shown on site map Remarks G Location shown on site map Remarks G Location shown on site map Remarks
3.	Erosion Areal extent Remarks Popth Color Manage Jouhne.
4.	Holes G Location shown on site map Holes not evident Areal extent Depth Remarks
5.	Vegetative Cover G Grass G Cover properly established G No signs of stress G Trees/Shrubs (indicate size and locations on a diagram), Remarks yellow are after draining feature.
6.	Alternative Cover (armored rock, concrete, etc.) Remarks
7.	Bulges G Location shown on site map Bulges not evident Areal extent Height Remarks

8.	Wet Areas/Water Damage	Wet areas/water damage not evident	
	G Wet areas	G Location shown on site map Areal extent	
	G Ponding	G Location shown on site map Areal extent	
	G Seeps	G Location shown on site map Areal extent	
	G Soft subgrade	G Location shown on site map Areal extent	
	Remarks		
9.	Slope Instability G Sli	des G Location shown on site map G No evidence of slope instability	
	Areal extent		
	Remarks		
В.	Benches G Applica	ble &N/A	
	(Horizontally constructed m	ounds of earth placed across a steep landfill side slope to interrupt the slope	:
		elocity of surface runoff and intercept and convey the runoff to a lined	
	channel.)		
1.	Flows Bypass Bench	G Location shown on site map G N/A or okay	
		•	
2.	Bench Breached	G Location shown on site map G N/A or okay	
ے.	Remarks	5 Document on the map 5 1971 of only	
3.	Bench Overtopped	G Location shown on site map G N/A or okay	
٥.		o because shown on she map	
_	Letdown Channels G Applica	ble &N/A	
C.		control mats, riprap, grout bags, or gabions that descend down the steep sic	e
	slope of the cover and will a	llow the runoff water collected by the benches to move off of the landfill	
	cover without creating erosi		
1.	Settlement	Location shown on site map G No evidence of settlement	
1.	Areal extent	Depth	
	Remarks	Deptii	
2.	Matarial Dagradation (Logotion shows on site was CNI and design	_
۷.	Material type	C Location shown on site map G No evidence of degradation Areal extent	
	Remarks	Areai extent	
3.	Erosion	Location shown on site map G No evidence of erosion	
.ر	Areal extent		
<u> </u>	- ·		

4.	Undercutting G Location shown on site map Areal extent Depth Remarks
5.	Obstructions Type & No obstructions G Location shown on site map Areal extent Size Remarks
6.	Expessive Vegetative Growth G No evidence of excessive growth G Vegetation in channels does not obstruct flow G Location shown on site map Remarks Areal extent Remarks
D. Co	over Penetrations Applicable G N/A
1.	Gas.Vents G Active Passive G Properly secured/locked 6 Functioning G Evidence of leakage at penetration G Needs Maintenance G N/A Remarks
2.	Gas Monitoring Probes Properly secured/locked Functioning Good condition G Evidence of leakage at penetration Good Maintenance Good N/A Remarks
3.	Monitoring Wells (within surface area of landfill) Properly secured/locked G Functioning Routinely sampled G Good condition G Evidence of leakage at penetration G Needs Maintenance G N/A Remarks Located Court Court Court
4.	Leachate Extraction Wells G Properly secured/locked G Functioning G Routinely sampled G Good condition G Evidence of leakage at penetration G Needs Maintenance G N/A Remarks
5.	Settlement Monuments G Located G Routinely surveyed G N/A Remarks

E.	Gas Collection and Treatment G Applicable & N/A
1.	Gas Treatment Facilities G Flaring G Thermal destruction G Collection for reuse G Good condition G Needs Maintenance Remarks
2.	Gas Collection Wells, Manifolds and Piping G Good condition G Needs Maintenance Remarks
3.	Gas Monitoring Facilities (e.g., gas monitoring of adjacent homes or buildings) G Good condition G Needs Maintenance G N/A Remarks
F.	Cover Drainage Layer G Applicable G N/A
1.	Outlet Pipes Inspected G Functioning N/A Remarks_
2.	Outlet Rock Inspected Functioning G N/A Remarks Oronic mend for dualize feathe.
G.	Detention/Sedimentation Ponds G Applicable G N/A
1.	Siltation Areal extent Depth G N/A G Siltation not evident Remarks
2.	Erosion Areal extent Depth Remarks
3.	Outlet Works G Functioning G N/A Remarks
4.	Dam G Functioning G N/A Remarks

H.	Retaining Walls	G Applicable	⊗N/A	
1.	Deformations Horizontal displacement Rotational displacement Remarks		Vertical displace	G Deformation not evident ement
2.	Degradation Remarks			G Degradation not evident
I.	Perimeter Ditches/Off-Site Dis	scharge	G Applicable	G N/A
1.	Siltation G Locat Areal extent Remarks	Depth_		not evident
2.	Vegetative Growth Vegetation does not import and extent Remarks	oede flow Type		G N/A
3.	Areal extent			Erosion not evident
4.	Discharge Structure Remarks	Functioning	G N/A direling	point at the of
	VIII. VEI	RTICAL BARRI	ER WALLS	G Applicable GN/A
1.	Settlement Areal extent Remarks	G Location show Depth		G Settlement not evident
2.	Performance Monitorin G Performance not monite Frequency Head differential Remarks	ored	G Evidence	of breaching

	IX. GROUNDWATER/SURFACE WATER REMEDIES G Applicable ON/A
A. Gi	roundwater Extraction Wells, Pumps, and Pipelines G Applicable & N/A
1.	Pumps, Wellhead Plumbing, and Electrical G Good condition G All required wells properly operating G Needs Maintenance G N/A Remarks
2.	Extraction System Pipelines, Valves, Valve Boxes, and Other Appurtenances G Good condition G Needs Maintenance Remarks
3.	Spare Parts and Equipment G Readily available G Good condition G Requires upgrade G Needs to be provided Remarks
B. Su	urface Water Collection Structures, Pumps, and Pipelines G Applicable GN/A
1.	Collection Structures, Pumps, and Electrical G Good condition G Needs Maintenance Remarks
2.	Surface Water Collection System Pipelines, Valves, Valve Boxes, and Other Appurtenances G Good condition G Needs Maintenance Remarks
3.	Spare Parts and Equipment G Readily available G Good condition G Requires upgrade G Needs to be provided Remarks

C.	Treatment System	G Applicable & N/A	
1.	G Metals removal G Air stripping G Filters G Additive (e.g., chelati G Others G Good condition G Sampling ports prope G Sampling/maintenanc G Equipment properly ic G Quantity of groundwa G Quantity of surface w	ck components that apply) G Oil/water separation G Bioremediation G Carbon adsorbers fon agent, flocculent) G Needs Maintenance rly marked and functional tee log displayed and up to date dentified ater treated annually rater treated annually	-
2.	G N/A G Goo	and Panels (properly rated and functional) od condition G Needs Maintenance	
3.		e Vessels od condition G Proper secondary containment G Needs Maintenance	<u></u>
4.		and Appurtenances od condition G Needs Maintenance	
5.	G N/A G Go G Chemicals and equip	od condition (esp. roof and doorways) G Needs repair	
6.	G Properly secured/lock G All required wells loo		
n	. Monitoring Data		
1.	Monitoring Data As routinely submitted	d on time . S is of acceptable quality	
2.		sts: Noulane	-

D. N	Ionitored Natural Attenuation			
1.	Monitoring Wells (natural attenuation remedy) G Properly secured/locked G Functioning G Routinely sampled G Good condition G All required wells located G Needs Maintenance GNA Remarks			
X. OTHER REMEDIES				
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.			
	XI. OVERALL OBSERVATIONS			
A. Implementation of the Remedy				
	Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.). About the sement influence of the post of the pos			
В.	Adequacy of O&M			
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy. **New Community** **Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy. **Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy. **Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy. **Describe issues and observations related to the implementation and scope of O&M procedures. **Describe issues and observations related to the implementation and scope of O&M procedures. **Describe issues and observations related to the implementation and scope of O&M procedures. **Describe issues and observations related to the implementation and scope of O&M procedures. **Describe issues and observations related to the implementation and scope of O&M procedures. **Describe issues and observations related to the implementation and scope of O&M procedures. **Describe issues and observations related to the implementation and scope of O&M procedures. **Describe issues and observation related to the implementation and scope of O&M procedures. **Describe issues and observation related to the implementation and scope of O&M procedures. **Describe issues and observation related to the implementation related to the implementatio			

C.	Early Indicators of Potential Remedy Problems		
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs, that suggest that the protectiveness of the remedy may be compromised in the future.		
	Ju evorim at the discharge Jestene, mut be addressed for the continued purteet in ness. I the landfill. My it were to get worse, it would expose the lines to damaging effects.		
D.	Opportunities for Optimization		
	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.		

Attachment 5 Restrictive Covenant for OU 2

RECEIVED 2010 Jul 22 PM 3: 33

COUNTY OF KALAMAZOO

2010-023169 07/22/2010 03:37:52 PM Pagas: 1 of 22 REST MILLER CANFIELD Timothy R. Snow County Clerk/Register Kalanazoo County MI M4/042

Above Space For Recording Purposes

DECLARATION OF RESTRICTIVE COVENANTS AND ENVIRONMENTAL PROTECTION EASEMENT

Allied Paper/Kalamazoo River DNRE Site ID No.: 39000051 U.S. EPA Site No.: MID006007306

DNRE Reference No.; RC-RRD-201-10-010

This Declaration of Restrictive Covenants and Environmental Protection Easement ("Declaration") is made by and between Georgia-Pacific LLC, a Delaware limited liability company ("Grantor"), having an address of 133 Peachtree Street, N.E., Atlanta, Georgia 30303; and the Michigan Department of Natural Resources and the Environment ("DNRE", the successor agency to the Michigan Department of Environmental Quality (MDEQ) pursuant to Executive Order 2009-45, effective January 17, 2010), having an address c/o Director, Michigan Department of Natural Resources and the Environment, P.O. Box 30473, Lansing, Michigan 48909-7973, shall be considered as the Grantee. (Collectively referred to as "Parties").

RECITALS

- A. Grantor is the owner of the real property located in Kalamazoo County and legally described in Exhibit 1 attached hereto ("Property").
- B. The Property is part of operable unit 2 of the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site ("Site"), DNRE Site ID No. 39000051, for which a Record of Decision ("ROD") has been issued by the United States Environmental Protection Agency ("U.S. EPA") for the purpose of carrying out Response Activities, as defined below, needed to address environmental contamination at the Site. The MDEQ concurred with the ROD in a letter dated September 26, 2006.
- C. The United States Environmental Protection Agency has, pursuant to Section 122 of the Comprehensive Environmental Response, Compensation and Liability Act ("CERCLA"), entered into a Consent Decree ("CD") with the Parties for the design and implementation of Response Activities at the Property. The CD, which bears Docket Number 1-09-cv-429, requires that Grantor place certain limitations on the use of the Property as therein described.

STATE OF MICHIGAN

COUNTY OF KALAMAZOO

I, Timoshy A. Binose,
Clerk/Register of Goods
of the Ceinty of Malamazoo, and the Circuit Court thereal, the sense
taking a Court of Report having a seed, do hereby cortilly that the
taking a Court of Report having a seed, do hereby cortilly that the
taking a Court of Report having a seed, do hereby cortilly that the
taking a Court of Report of the original thereal on the la
titles. Signed and seeled at Kalamazoo, Michigan,
the Local Courty Clerk/Register of Descis

THEOTHY A SHOW, Courty Clerk/Register of Descis

By Deputy Clerk/Register of Descis

MAR 3 1 2011

From Cans E

Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, Kalamazoo, MI Declaration of Restrictive Covenants
Page 2 of 13

- D. By this Declaration of Restrictive Covenants and Environmental Protection Easement, Grantor assumes no additional liability to the United States or the State of Michigan with regard to the Property. Grantee assumes no liability with regard to the Property by this Declaration of Restrictive Covenants and Environmental Protection Easement.
- E. The Site was placed on the National Priorities List ("NPL") in 1990 and is a facility as that term is defined in Section 101(9) of the Comprehensive Environmental Response, Compensation and Liability Act, 42 U.S.C. § 9601 et seq. ("CERCLA") and Section 20101(0) of Part 201, Natural Resources and Environmental Protection Act, 1994 PA 451, as amended, MCL 324.20101(0) et seq. ("NREPA"). Hazardous substances, including polychlorinated biphenyls ("PCBs") have been released and/or disposed of on the Property. The hazardous substances were contained in a landfill from the prior manufacturing activities associated with the Site. Prior to recording this Declaration, Response Activities have been undertaken to remove certain contaminated soils and waste debris.
- F. At the time of recording of this Declaration, U.S. EPA has determined that the hazardous substances at the Property present a threat to human health through direct contact or ingestion, and that the land use and resource restrictions set forth below are required to prevent unacceptable exposures.
- G. The restrictions contained in this Declaration of Restrictive Covenants and Environmental Protection Easement are based upon information available to the U.S. EPA and DNRE at the time the ROD was issued. Failure of the Response Activities to achieve and maintain the criteria, exposure controls, and requirements specified in the ROD; future changes in the environmental condition of the Property, the applicable cleanup criteria or the discovery of environmental conditions at the Property that were not accounted for in the ROD; or the use of the Property in a manner inconsistent with the restrictions described herein, may result in this Declaration not being protective of public health, safety, and welfare, and the environment. Information pertaining to the environmental conditions at the Property and Response Activities undertaken at the Site is on file with the DNRE, Remediation and Redevelopment Division. Site Identification Number: 39000051.

DEFINITIONS

"MDEQ" shall mean the Michigan Department of Environmental Quality, its successor entities, and those persons or entities acting on its behalf;

"DNRE" shall mean the Michigan Department of Natural Resources and the Environment, the successor agency to the MDEQ pursuant to Executive Order 2009-45, effective January 17, 2010.

"NREPA" shall mean Part 201, Environmental Remediation, of the Natural Resources and Environmental Protection Act, 1994 PA 451, MCL 324.101 et seq. as amended.

Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, Kalamazoo, MI Declaration of Restrictive Covenants
Page 3 of 13

"Owner" shall mean, at any given time, the then current title holder of the Property or any portion thereof;

"Response Activities" shall mean, consistent with section 101(25) of CERCLA, such Activities as have been or may be necessary to conduct any removal, remedy or remedial action, as those terms are defined in sections 101(23) and 101(24) of CERCLA, on the Property and/or at the Site, including enforcement activities related thereto;

"U.S. EPA" shall mean the United States Environmental Protection Agency, its successor entities and those persons or entities acting on its behalf.

All other terms used in this document which are defined in Part 3, Definitions, of the NREPA; Part 201 of the NREPA; or the Part 201 Administrative Rules ("Part 201 Rules"), 1990 AACS R 299.5105 et seq., shall have the same meaning in this document as in Parts 3 and 201 of the NREPA and the Part 201 Rules, as of the recording date of this Declaration.

NOW THEREFORE, the parties agree as follows:

- 1. <u>Recitals</u>. The foregoing Recitals shall not be interpreted as mere recitals, but shall be deemed part of this Declaration and shall be enforceable hereunder.
- 2. <u>Purpose</u>. The purpose of this Declaration is to create restrictions in Grantor's real property rights, which will run with the land for as long as necessary to facilitate the remediation of environmental contamination described in the ROD as determined or modified by U.S. EPA; to grant a right of access to Grantee and its assigns and representatives to monitor and conduct Response Activities; to protect human health and the environment by reducing the risk of exposure to contaminants of concern; and to provide for the long-term protectiveness of the remediation.
- 3. Grant. Grantor, on behalf of itself, its successors and assigns, in consideration of the terms of the Consent Decree in the case of the United States of America v. Georgia-Pacific, LLC, does hereby covenant and declare that the Property shall be subject to the restrictions on use set forth below, warrants that Grantor has good and sufficient title to the Property described in Exhibit 1, and does give, grant, declare and convey to the Grantee, and its assigns and representatives, the perpetual right to enforce said use restrictions. Grantor further, on behalf of itself, its successors and assigns, in consideration of the settlement terms set forth in the CD, does give, grant, declare and convey to the Grantee, and its assigns and representatives: 1) an environmental protection easement of the nature and character, and for the purposes hereinafter set forth, with respect to the Property; and 2) the right to enforce said easement.
- 4. Third Party Beneficiary. The Grantor, on behalf of itself and its successors, transferees, and assigns, hereby agrees that the United States, acting by and through the U.S. EPA its successors and assigns shall be a third party beneficiary ("Third Party Beneficiary") of all the

2010-023169 07/22/2010 03:37:52 PM
Pages: 3 of 22 REST
MILLER CANFIELD
Timothy A. Snow County Clerk/Register Kalamazoo County MI

Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, Kalamazoo, MI Declaration of Restrictive Covenants
Page 4 of 13

benefits and rights set out in the restrictions, covenants, easements, exceptions, notifications, conditions and agreements herein, and that the Third Party Beneficiary shall have the right to enforce the restrictions described herein as if it was a party hereto. No other rights in third parties are intended by this Declaration, and no other person or entity shall have any rights or authorities hereunder to enforce these restrictions, terms, conditions or obligations beyond the parties hereto, their successors, assigns, subsequent owners of the Property and the Third Party Beneficiary.

- 5. Restrictions on Use. Grantor, on behalf of itself, its successors and assigns or other persons acquiring an interest in the Property and their authorized agents, employees, or persons acting under their direction and control, covenants and declares that the Property shall be subject to the restrictions on use set forth below, and intends that said restrictions and covenants run with the land and may be enforced in perpetuity against any and all Owners by Grantee and the Third Party Beneficiary and their successors and assigns. Owner, its successors and assigns shall:
 - a) Not use the Property in a manner that causes existing contamination to migrate beyond the boundaries of the Property, increases the cost of Response Activities, or otherwise exacerbates the existing soil and groundwater contamination located on the Property. The term exacerbation is more specifically defined in Section 20101(1)(n) of the NREPA, MCL 324.20101(1)(n).
 - b) Prohibit and shall not use the Property in a manner that may interfere with Response Activities at the Property, including interim response, remedial action, operation and maintenance, monitoring, or other measures necessary to assure the effectiveness and integrity of the remedial action.
 - c) Restrict the uses of the Property to those uses compatible with industrial use consistent with the assumptions and basis for the cleanup criteria established pursuant to Section 20120a(1)(i) of the NREPA and generally described in the Description of Allowable Uses, attached hereto as Exhibit 3. The following uses allowed under the Kalamazoo Light Industrial District zoning designation are prohibited:
 - i) Wholesale and retail sale of goods, merchandise, and services;
 - ii) Repair garages and service stations;
 - iii) Veterinary hospitals;
 - iv) Recreational uses;
 - v) Hotels, boarding and lodging houses, motor courts, and motels;
 - vi) Funeral parlors;
 - vii) Skating rinks and bowling alleys;
 - viii) Drive-in theatres;

2010-023169 07/22/2010 03:37:52 PM

ix) Kennels.

MILLER CANFIELD
Timothy R. Snow County Clerk/Register Kalamazoo County MI

Cleanup criteria for specific categories of land use are located in the Government Documents section of the Library of Michigan.

- d) Not construct or use wells or other devices on the Property to extract groundwater for consumption, irrigation, or any other use, except for wells and devices that are necessary for Response Activities, testing and monitoring groundwater contamination levels in accordance with plans approved by the DNRE or U.S. EPA. Short term dewatering for construction purposes is permitted provided the dewatering, including management and disposal of the groundwater, is conducted in accordance with all applicable local, state, and federal laws and regulations and does not cause or result in a new release, exacerbation of existing contamination, or any other violation of local, state, and federal environmental laws and regulations including, but not limited to, Part 201 of the NREPA.
- e) Prohibit any excavation or other intrusive activity on the Property that could affect the integrity of the cap placed over the landfill areas, except during short term construction or repair projects or for purposes of further treating or remediating the subject contamination. Any excavation or other intrusive activity, including removing, altering, or disturbing the landfill cap, that could affect the integrity of the cap, must be replaced with a cover that provides at least an equivalent degree of protection as the original barrier within 14 days of completed unless additional sampling is conducted that demonstrates that a cap in the area is no longer necessary and this determination is reviewed and approved by the U.S. EPA.
- Prohibit the construction of buildings or structures on the Property unless the buildings or structures are built with slab-on-grade construction (no basements or crawl spaces) and an evaluation of the potential for any hazardous substances, including methane, to volatilize into indoor air is performed to assure the protection of persons who may be present in the buildings. If necessary, such construction shall incorporate engineering controls designed to eliminate the potential for subsurface vapor phase hazardous substances to migrate into the new building or structure at concentrations greater than applicable criteria. Any building construction plans shall be submitted to and approved by the U.S. EPA.
- g) Allow the installation of permanent markers that have been approved by the U.S. EPA, in consultation with DNRE, within the Property boundaries. These permanent markers shall more or less describe the restricted area and the nature of the

prohibitions specified in the provisions of this Restrictive Covenant and the liber and page numbers of this Restrictive Covenant as recorded in the Kalamazoo County Register of Deeds Office. The Owner shall not remove, cover, obscure, or otherwise alter or interfere with any permanent markers placed on the Property at the locations generally depicted in Exhibit 2. Owner shall keep vegetation and other materials clear of any permanent markers to assure that the markers are readily visible.

- 6. Access. As part of the easement granted herein, Grantor does give, grant, declare and convey to the Grantee, and its assigns and representatives: an irrevocable and continuing right of access at all reasonable times to the Property for the purposes of:
 - a) monitoring, overseeing and/or implementing the Response Activities described in the ROD or any other U.S. EPA or DNRE decision document for the Property or the Site, and conducting any necessary inspection and repair of any operation and maintenance equipment, including the inspection of records or documents related thereto.
 - b) verifying any data or information submitted to the U.S. EPA and/or the DNRE, and determining and monitoring compliance with the ROD and this Declaration, any other U.S. EPA or DNRE decision document, and any implementing statement of work or work plan;
 - c) verifying that no action is being taken on the Property in violation of the terms of this Declaration or of any federal or state environmental laws or regulations;
 - d) conducting and/or monitoring investigations relating to the nature and extent of contamination on or near the Property and the Site including, without limitation, sampling of air, water, sediments, soils, and specifically, without limitation, obtaining split or duplicate samples;
 - e) conducting periodic reviews of the Response Activities at the Property and at the Site, including but not limited to, reviews required by applicable statutes and/or regulations; and
 - implementing additional or new Response Activities, if the remedial action selected in the ROD or any other U.S. EPA and/or DNRE decision document results in any hazardous substances, pollutant or contaminants remaining at the Site above levels that allow for unlimited use and unrestricted exposure, and U.S. EPA, in consultation with DNRE and pursuant to Section 121(c) of CERCLA, determines that, upon its completion, the selected remedy for the Site will not be protective of public health, welfare or the environment; or

Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, Kalamazoo, MI Declaration of Restrictive Covenants
Page 7 of 13

ţ

- g) implementing additional or new response activities, as that term is defined in Section 20101(1)(ee) of the NREPA, if the remedial action selected in the ROD or any other DNRE and/or U.S. EPA decision document results in any hazardous substances, pollutants or contaminants remaining at the Site above the criteria developed pursuant to Section 20120(a)(1)(i) of the NREPA, and DNRE, in consultation with U.S. EPA, determines that, upon its completion, the remedy will not be protective of the public health, safety, welfare or the environment.
- Contaminated Soil/Residuals Management. Soils and residuals underlying the landfill cap at the Property were, at the time of recording of this Notice, polychlorinated biphenyl (PCB)-containing material that is or may be regulated under the Toxic Substances Control Act (TSCA), 15 USC 2601 et seq. or Part 115, Solid Waste Management, of the NREPA, MCL 324.11501 et seq. If the Owner undertakes any excavation or otherwise disturbs the soils or residuals beneath the cap, the Owner shall, at that time, confirm whether these materials are regulated under TSCA or Part 115 of the NREPA. If so, the Owner shall handle and dispose of the soils and residuals in full compliance with all relevant requirements of state and federal laws. If the soils or residuals are not regulated under TSCA or Part 115 at the time of excavation or disturbance, the Owner shall manage such soils, media and/or debris and all other soils located on the Property in accordance with the requirements of Section 20120c of the NREPA, the Part 201 Administrative Rules promulgated thereunder, and all other relevant state and federal laws.
- 8. <u>DNRE Entry, Access, and Response Authority.</u> Nothing in this Declaration shall limit or otherwise affect DNRE's right of entry and access, or authorities to take Response Activities as defined in this Declaration, as well as in Section 20101(1)(ee) Part 201 of the NREPA, under CERCLA, the National Contingency Plan, 40 C.F.R. Part 300, the NREPA, and any successor statutory provisions, or other state or federal law.
- 9. <u>U.S. EPA Entry, Access, and Response Authority.</u> Nothing in this Declaration shall limit or otherwise affect U.S. EPA's right of entry and access, or authorities to take Response Activities as defined in this Declaration, as well as in CERCLA, the National Contingency Plan, 40 C.F.R. Part 300, and any successor statutory provisions, or other state or federal law.
- 10. <u>Term.</u> This Restrictive Covenant and Environmental Protection Easement shall run with the Property until terminated or revoked pursuant to paragraph 10, below, and shall be binding on the Owner; future owners; and all current and future successors, lessees, easement holders, their assigns, and their authorized agents, employees, or persons acting under their direction and control.
- 11. <u>Modification</u>. The Restrictive Covenants and Environmental Protection Easement contained herein shall continue for so long as necessary to accomplish the Response

Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, Kalamazoo, MI Declaration of Restrictive Covenants
Page 8 of 13

Activities described in the CD, and shall not be modified, suspended, terminated or revoked without express written authorization by U.S. EPA, with the approval of DNRE. The Grantor or any subsequent owner of the Property may seek to modify or terminate, in whole or in part, the restrictions set forth herein by submitting to U.S. EPA a written application that identifies each such restriction to be terminated or modified, describes the terms of each proposed modification, and sets out any proposed revisions to the environmental easement/restrictive covenants in this Declaration. Each application for termination or modification of any restriction or easement set forth herein shall include a demonstration by the applicant that the requested termination or modification will not interfere with, impair or reduce:

- a) the effectiveness of any measures undertaken pursuant to the CD;
- b) the long term protectiveness of the remediation; or
- c) protection of human health and the environment.

If U.S. EPA makes a determination that an application satisfies the requirements of this paragraph, including the criteria specified in (a) through (c), U.S. EPA will notify the owner of the Property in writing. If U.S. EPA does not respond in writing within 90 days to an application to modify or terminate any restrictions, U.S. EPA shall be deemed to have denied Owner's application. Any modification to or rescission of this Declaration of Restrictive Covenants and Environmental Protection Easement shall be filed with the appropriate Registrar of Deeds and a certified copy shall be returned to DNRE and U.S. EPA at the addresses listed below.

- 12. Enforcement. The Grantor, Grantee or Third Party Beneficiary, each acting independently and without the others, shall be entitled to enforce the terms of this Declaration in a judicial action seeking specific performance or other applicable remedies at law or in equity. The right to so enforce the conditions and restrictions in this Declaration are in addition to any other remedies that may be available, including, but not limited to, remedies under CERCLA. Whether to enforce the terms of this Declaration or to participate in an enforcement action brought by any of the others shall be at the sole discretion of the Grantor, Grantee and/or the Third Party Beneficiary and any forbearance, delay or omission to exercise any of their rights under this Declaration in the event of a breach of any term of this Declaration shall not be deemed a waiver by any such party of any such term, or any other term, or any rights of any of the Grantor, Grantee or Third Party Beneficiary under this Declaration. This Declaration and the rights and restrictions granted herein shall not inure to the benefit of the public in general.
- 13. <u>Transfer of Interest.</u> The Owner shall provide notice to the DNRE and to U.S. EPA of the Owner's intent to transfer any interest in the Property, or any portion thereof, at least fourteen (14) business days prior to consummating the conveyance. A conveyance of title, easement, or other interest in the Property shall not be consummated by the Owner without complete provision for compliance

Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, Kalamazoo, MI Declaration of Restrictive Covenants Page 9 of 13

with the terms and conditions of this Declaration of Restrictive Covenants and Environmental Protection Easement and the applicable provisions of Section 20116 of the NREPA, as determined by U.S. EPA and DNRE. The Owner shall include in any instrument conveying any interest in any portion of the Property, including but not limited to, deeds, leases, and mortgages, a notice which is in substantially the following form:

NOTICE: THE INTEREST CONVEYED HEREBY IS SUBJECT TO A **COVENANTS** AND DECLARATION OF RESTRICTIVE ENVIRONMENTAL PROTECTION EASEMENT, DATED 2009, AND RECORDED WITH THE KALAMAZOO COUNTY REGISTER OF DEEDS, DOC. NO. . THESE RIGHTS AND RESTRICTIONS RUN WITH THE LAND AND ARE ENFORCEABLE BY THE GRANTOR, GRANTEE AND THE THIRD PARTY BENEFICIARY IDENTIFIED THEREIN.

- 14. Reservation of Defenses. Nothing in this Declaration shall be construed to enlarge the jurisdiction of federal courts, to create subject matter jurisdiction to adjudicate any claims against U.S. EPA or DNRE, or otherwise to operate as a waiver of any sovereign immunity of the United States or the State of Michigan, and the United States and DNRE expressly reserve all rights and defenses they may have in connection with any action initiated pursuant to this Declaration. Nothing herein shall be construed as Grantor's waiver of any rights or defenses available at law, in equity, provided by any statute or by any state and federal constitution.
- 15. Notices. Any notice, demand, request, consent, approval, or communication that is required to be made or obtained under this Declaration shall be made in writing and include a statement that the notice is being made pursuant to the requirements of this Declaration and shall be served either personally or sent via first class mail, postage prepaid, as follows:

For the U.S. EPA:

Director Superfund Division (SR-6J) U.S. Environmental Protection Agency, Region 5 77 West Jackson Blvd. Chicago, IL 60604

with a copy to:

Office of Regional counsel (C-14J) U.S. Environmental Protection Agency, Region 5 77 West Jackson Blvd.

Chicago, IL 60604

2010-023169 07/22/2010 03:37:52 PM

Pages: 9 of 22 REST MILLER CANFIELD Timothy A. Snow County Clark/Register Kalamazoo County MI

Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, Kalamazoo, MI Declaration of Restrictive Covenants
Page 10 of 13

For the DNRE:

Chief
Remediation and Redevelopment Division
Michigan Department of Natural Resources and the Environment
P.O. Box 30426
Lansing, MI 48909-7926

16. Miscellaneous,

- a) <u>Controlling Law.</u> The interpretation and performance of this Declaration shall be governed by the laws of the United States as to the obligations referred to in the CD, and by the laws and regulations of the State of Michigan for all other purposes hereunder (without reference to choice of laws principles thereof). The right to enforce the conditions and restrictions in this instrument are in addition to other rights and remedies that may be available, including, but not limited to, administrative and judicial remedies under CERCLA or Part 201 of the NREPA.
- b) <u>Liberal Construction</u>. Any general rule of construction to the contrary notwithstanding, this Declaration shall be liberally construed to affect the purpose of this Declaration and the policy and purpose of CERCLA and the land use restrictions and prospective use limitations of the State of Michigan. If any provision of this Declaration is found to be ambiguous, an interpretation consistent with the purpose of this Declaration that would render the provision valid shall be favored over any interpretation that would render it invalid.
- c) <u>Severability.</u> If any provision of this Declaration is held to be invalid by any court of competent jurisdiction, the invalidity of such provision shall not affect the validity of any other provision hereof, and all other provisions shall continue unimpaired and in full force and effect.
- d) <u>Entire Agreement.</u> This Declaration supersedes all prior discussions, negotiations, understandings, or agreements relating to the matters addressed herein, all of which are merged herein.
- e) <u>Successors.</u> The covenants, terms, conditions, and restrictions of this Declaration shall be binding upon, and inure to the benefit of Grantor and Grantee and their agents, successors, and assign and any subsequent owners, occupants or other persons acquiring an interest in the Property and their respective agents, successors and assigns. The rights, but not the obligations or authorities, of the U.S. EPA are freely assignable to any public entity, subject to the notice to the Grantor, its successors and assigns, as their interests appear in the public title records kept and maintained by the Kalamazoo County Registrar of Deeds.

2010-023169 07/22/2010 03:37:52 PM
Pages: 10 of 22 REST
MILLER CANFIELD
Timothy A. Snow County Clerk/Register Kalamazoo County MI

Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, Kalamazoo, MI Declaration of Restrictive Covenants
Page 11 of 13

17. Exhibits.

Exhibit 1—Legal Description of the Property.

Exhibit 2 — Survey of the Property generally depicting the landfill relative to the Property boundaries, and the location of the permanent markers.

Exhibit 3 — Description of Allowable Uses

18. <u>Authority to Execute Restrictive Covenant and Environmental Protection</u>

<u>Easement.</u> The undersigned person executing this Declaration on behalf of the Owner represents and certifies that the Grantor has good and sufficient title to the Property described in Exhibit 1 and that he or she is duly authorized and has been empowered to execute and deliver this Declaration of Restrictive Covenants and Environmental Protection Easement.

Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, Kalamazoo, MI Declaration of Restrictive Covenants
Page 12 of 13

IN WITNESS WHEREOF, the County Registrar of Deeds has caused this Declaration of Restrictive Coverants and Environmental Protection Easement to be executed on this 27th day of www ,2010.

FOR Georgia-Pacific, LLC

Signature: Date: 07/22/2010 ,2010

Name (print): Garry T/Griffith

Title: Director Environmental Field Survers

Address: 133 Peachtree Street, N.E.

Atlanta, GA 30303

STATE OF MICHIGAN

On this And day of July, 2010, before me appeared Garry T. Griffith, the Director of Envi Field Security of Georgia-Pacific, LLC, a Delaware limited liability company, known to be the person who executed the foregoing document.

Many Thomas , Notary Public Van Bureen County, Mt My Commission Expires: 01-10-2011

2010-023169 07/22/2010 03:37:52 PM
Pages: 12 of 22 REST
MILLER CANFIELD
Timothy A. Snow County Clerk/Register Kalamazoo County MI
EMINIUM, NIPALLILALIMATERIALIMAN MARTINIAN MINIMAN M

Acting in Kalamazoo County, MI

Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, Kalamazoo, MI Declaration of Restrictive Covenants
Page 13 of 13

FOR the Michigan Department of Natural Resources and the Environment	
Signature: Multiple MAROL Name (print): Lyne Marol Title: Achy Gref, Remediation and Redevelope Address: Remediation and Redevelope Michigan Department of Natural Resources and the Er P.O. Box 30426 Lansing, MI 48909-7926	nent Division
STATE OF MICHIGAN) COUNTY OF INGHAM) On this diday of fund, 201 Octing Chief. of the Michigan Department thousand to be the person who executed the form	0, before me appeared Lynch Marolf, the nt of Natural Resources and the Environment, oregoing document.
KATHLEEN J. SRUBA NOTATY PUBLIC - STATE OF MICHIGAN COUNTY OF EATON My Commission Expires Sept. 15, 2012 Acting in the County of Longitude	, Notary Public County, Michigan My Commission Expires:

Prepared by and after recording return to: Ronald E. Baylor, Esq. Miller, Canfield, Paddock and Stone, P.L.C. 277 South Rose Street, Suite 5000 Kalamazoo, Michigan 49007 269-381-7030

EXHIBIT 1 - Legal Description

CONSENT DECREE

FOR THE DESIGN AND IMPLEMENTATION OF CERTAIN RESPONSE ACTIONS AT OPERABLE UNIT 2 OF THE

ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

A. Willow Boulevard Landfill, including the Willow Boulevard Drainageway
Tax ID No. 39-06-24-195-010:

Real estate situated in the Township of Kalamazoo, County of Kalamazoo, State of Michigan, described as follows:

Commencing at the West 1/4 post of Section 24, T2S, R11W, Kalamazoo Township, Kalamazoo County, Michigan; thence North 00°00'00" East along the West line of said Section, 480.00 feet for the place of beginning of the land hereinafter described; thence along an intermediate traverse line along the former and present bank of the Kalamazoo River for the next 11 courses: North 03°28'14" East, 124.71 feet; thence North 09°00'57" East, 100.85 feet; thence North 55°30'25" East, 107.12 feet; thence South 86°49'05" East, 263.42 feet; thence north 66°36'14" East, 131.42 feet; thence South 64°46'29" East, 172.14 feet; thence South 54°56'07" East, 60.53 feet; thence South 55°08'59" East, 229.48 feet; thence South 18°53'55" West, 103.80 feet; thence South 32°58'13" East, 62.74 feet; thence South 64°02'06" East, 28.26 feet; thence South 54°17'40" East, 165.34 feet to the most Northerly corner of Lot "A", Field Addition, as recorded in Liber 7 of Plats on Page 19, Kalamazoo County Records; thence Westerly along the Northerly boundary of Field Addition and the Southerly bank of the former Kalamazoo River location, 1,200 feet, more or less, to the place of beginning. Together with all land lying between the intermediate traverse line and along the former and present bank of the Kalamazoo River.

B. A-Site Landfill, including the Area South of the A-Site Berm (including former Olmstead Creek); the Area East of Davis Creek; and the AMW-3A Area:

Real estate situated in the Township of Kalamazoo, County of Kalamazoo, State of Michigan, described as follows:

Parcels 4 & 6, Tax ID Nos. 39-06-24-306-980 (Parcel 4); 39-06-24-195-010 (Parcel 6):

Commencing at the East 1/4 post of Section 24, T. 2 S., R. 11 W., Kalamazoo Township, Kalamazoo County, Michigan; thence North 89°-41'-27" West along the East and West 1/4 line, 2,648.87 feet to the center 1/4 post of said Section and the place of beginning of the land hereinafter described; thence continuing along

2010-023169 07/22/2010 03:37:52 PM
Pages: 15 of 22
MILLER CANFIELD
Timothy A. Snow County Clerk/Register Kalamazoo County MI

the East and West 1/4 line, North 89°-39'-47" West, 160.00 feet; thence South 12°-25'-11" East, 321.07 feet; thence North 89°-39'-47" West parallel with the East and West 1/4 line, 150.00 feet to the Northeast corner of Lot 6, Field Addition, as recorded in Liber 7 of Plats on Page 19, Kalamazoo County Records; thence along a Reference Line along the original location of Olmstead Creek (no longer exists) as defined in the recorded plat of Field Addition for the next 19 courses: North 06°-59'-22" West, 123.39 feet; thence North 88°-34'-50" West, 185.73 feet; thence North 81°-15'-19" West, 30.05 feet; thence South 34°-28'-39" West, 49.94 feet; thence South 67°-21'-45" West, 44.10 feet; thence North 76°-30'-07" West, 79.72 feet; thence South 89°-12'-27" West, 146.25 feet; thence North 65°-00'-00" East. 48.96 feet; thence North 25°-02'-44" West, 119.53 feet; thence South 65°-07'-20" West, 152.04 feet; thence North 58°-20'-09" West, 99.86 feet; thence North 64°-00'-40" West, 99.73 feet; thence South 82°-37'-27" West, 74.56 feet to the Northwest corner of Lot 25 of said Field Addition; thence continuing along said Reference Line, North 30°-47'-39" East, 150.00 feet; thence North 69°-09'-52" West, 174.77 feet; thence North 09°-35'-04" West, 111.38 feet; thence South 81°-07'-40" West, 100.97 feet; thence North 38°-30'-10" West, 100.00 feet; thence South 75°-53'-17" West, 100,00 feet to the end of said Reference Line and the most Easterly corner of Lot "A" of Field Addition; thence Westerly along the Southerly line of Lot "A", 196.91 feet along a non-tangent curve to the left with a radius of 591.00 feet and a chord bearing South 86°-34'-39" West, 196.00 feet to the most Westerly corner of Lot "A"; thence North 61°-06'-40" East along the Northerly line of Lot "A", 128.40 feet to the most Northerly corner of Lot "A" and the beginning of an Intermediate Traverse line along the former and present Kalamazoo River; thence along said Traverse line along the former bank of the Kalamazoo River for the next 5 courses: North 54°-17'-40" West, 165,34 feet: thence North 65°-02'-06" West, 28.26 feet; thence North 32°-58'-13" West, 62.74 feet; thence North 18°-53'-55" East, 103.80 feet; thence North 37°-44'-01" East, 47.17 feet to the end of the Traverse line along the former River bank and the beginning of an Intermediate Traverse line along the present Kalamazoo River; thence along said Traverse line for the next 12 courses: North 82°-59'-59" East, 155.85 feet; thence North 88°-53'-28" East, 322.27 feet; thence North 80°-45'-46" East, 162.22 feet; thence North 77°-49'-31" East, 115.64 feet; thence South 87°-20'-00" East, 198.40 feet; thence North 81°-39'-50" East, 163.96 feet; thence South 88°-52'-19" East, 120.25 feet; thence North 80°-43'-58" East, 160.64 feet; thence South 78°-28'-42" East, 38.00 feet; thence North 77°-12'-10" East, 90.18 feet; thence North 79°-43'-14" East, 210.00 feet; thence North 18°-16'-32" East, 40.00 feet to the North and South 1/4 line of said Section and the end of the Intermediate Traverse line; thence South 00°-08'-38" East along said 1/4 line, 817.50 feet to the place of beginning. Together with all land lying between the Reference Line and the location of Olmstead Creek as established by the plat of Field Addition. Also all land lying between the Intermediate Traverse line along the former and present Kalamazoo River. Containing 29.65 acres ±.

Parcel 11, Tax ID Nos. 39-06-24-305-360, 39-06-24-305-420, 39-06-24-305-430:

Real estate situated in the Township of Kalamazoo, County of Kalamazoo, State of Michigan, described as follows:

Lots 36, 42 and 43, Field Addition according to the Plat therof as recorded in Liber 7 of Plats on Page 19, Kalamazoo County Records.

Lot 36 contains 0.36 acres ±, Lots 42 and 43 contain 0.36 acres ±.

Parcel 13, Tax ID No. 39-06-24-340-016:

Real estate situated in the Township of Kalamazoo, County of Kalamazoo, State of Michigan, described as follows:

Beginning at the center of Section 24, T2S, R11W; thence South along the North and South ¼ line 667.17 feet; thence Northwesterly parallel with Lake Street 244.73 feet; thence Northerly to its intersection with Olmstead Creek and the East line of the recorded Plat of Field Addition, according to the Plat thereof as recorded in Liber 7 of Plats on Page 19, Kalamazoo County Records; thence Easterly 150 feet to the centerline of Olmstead Drain; thence Northerly along said drain to the East and West ¼ line of said Section; thence Easterly thereon 160 feet to the place of beginning.

Being more particularly described as follows:

Commencing at the East ¼ Post, Section 24, T2S, R11W, Kalamazoo Township, Kalamazoo County, Michigan; thence North 89°41'27" West along the East and West ¼ line of said Section, 2,648.87 feet to the center ¼ Post of said Section; thence South 00°02'33" West along the North and South ¼ line, 667.17 feet; thence North 82 02'22" West parallel with Lake Street, 242.33 feet (recorded as 244.73 feet) to the East line of Field Addition according to the Plat thereof as recorded in Liber 7 of Plats on Page 19, Kalamazoo County records; thence North 00°04'51" West along the East line of said Plat, 321.88 feet to the former location of Olmstead Creek; thence South 89°39'47" East parallel with the East and West ¼ line, 150.00 feet to the center line of former location of Olmstead Drain; thence North 12°25'11" West along the former location of said drain, 321.07 feet to the East and West ¼ line of said Section; thence south 89°39'47" East thereon, 160.00 feet to the beginning. Containing 2.77 acres ±.

EXHIBIT 2 - Survey of Property and Permanent Marker Locations

EXHIBIT 3 - Description of Allowable Uses

The primary activity at the Property is and shall continue to be industrial in nature (e.g., manufacturing, utilities, industrial research and development, petroleum bulk storage). Access to the property is and shall continue to be reliably restricted consistent with its use (e.g., by fences, security personnel, or both).

The allowable land use includes property that is currently zoned industrial or is anticipated to be zoned as industrial. This may include different zoning designations, depending on the community, such as "light industrial" or "heavy industrial," but does not include any use the zoning designation may include that allows for residential use or permanent residence on the property. Inactive or abandoned properties can be included in this category if the use was and/or will be industrial, as described above and access is controlled as necessary to assure unacceptable exposures do not occur. The industrial category does not include any form of residential use, farms or agricultural use, gasoline service stations, and other establishments where children may commonly be present.

PARCEL SKETCH OF PARCEL 13

LOCATED IN SECTION 24, T. 2 S., R. 11 W. KALAMAZOO TOWNSHIP, KALAMAZOO COUNTY, MICHIGAN BY

Prein&Newhof

Engineers .. Surveyors .. Environmental & Soils Laboratory

7123 STADIUM DRIVE KALAMAZOO, MICHIGAN 49009 PHONE: (269) 372-1158

MAY 19, 2010

Attachment 6 Restrictive Covenant for OU 4

DECLARATION OF RESTRICTIVE COVENANT

Grantor:

Plainwell Inc.

STATE OF MICHIGAN BLLEGAN COUNTY RECORDED 3 APR 2004 9:04:41 AM

RECU APR 2 2 200

EC'D APR 19 2004

DECLARATION OF RESTRICTIVE COVENANT

MDEQ Reference No.: RC-RRD-03-052

U.S. EPA Site No.: 059B

This Declaration of Restrictive Covenant ("Restrictive Covenant") has been recorded with the Allegan County Register of Deeds for the purpose of protecting public health, safety, and welfare, and the environment by prohibiting or restricting activities that could result in unacceptable exposure to environmental contamination present at the 12th Street Landfill property, as legally described in Exhibit 1 attached hereto ("Property").

The Property is associated with the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site (the "Site"). The Site was placed on the National Priorities List on August 30, 1990, and is a facility, as that term is defined in Part 201, Environmental Remediation, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended, MCL 324.20101 et seq. ("NREPA"). The Property comprises a portion of the 12th Street Operable Unit #4 of the Site for which on-going remedial actions are being conducted in accordance with the Record of Decision ("ROD") issued by the Michigan Department of Environmental Quality ("MDEQ") and concurred with by the United States Environmental Protection Agency ("USEPA") on September 28, 2001 pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, 42 USC 9601 et seq., ("CERCLA"). Information pertaining to the environmental conditions at the Property and the remedial actions to be undertaken at the Property is on file with the USEPA and the Michigan Department of Environmental Quality ("MDEQ"), Remediation and Redevelopment Division.

This Restrictive Covenant has been recorded to: 1) restrict unacceptable exposures to hazardous substances located on the Property; 2) assure that the use of Property is consistent with the exposure assumptions and control measures required pursuant to the ROD; and 3) to prevent damage or disturbance of any element of the remedial action constructed on the Property. The restrictions contained in this Restrictive Covenant are based upon information available to the USEPA and MDEO at the time the ROD was issued. Failure of the response activities to achieve and maintain the criteria, exposure controls, and requirements specified in the ROD; future changes in the environmental condition of the Property or changes in the cleanup criteria developed under CERCLA and the NREPA; the discovery of environmental conditions at the Property that were not accounted for in the ROD; or use of the Property in a manner inconsistent with the restrictions described herein, may result in this Restrictive Covenant not being protective of public health, safety, and welfare, and the environment.

Property Identification Number: 0317-024-047-00

Exhibit 2 provides a survey of the Property that is subject to the land use or resource use restrictions specified herein.

Summary of Remedial Actions

The Property was historically used as a landfill for wastes and residuals associated with the manufacturing and recycling of paper. Response activities to be undertaken at the Property

PAGE 620

as part of the remedial action required under the ROD to assure the protection of public health, safety and welfare, and the environment and ensure the integrity of the remedy include, but are not necessarily limited to: the construction of a landfill cap and containment systems to contain paper residuals and soils and sediments contaminated with polychlorinated biphenyls ("PCBs) and prevent the erosion of PCB contaminated materials into the Kalamazoo River; construction and maintenance of a fence; construction, operation and maintenance of groundwater monitoring system; and establishment of the land use and resource use restrictions contained herein.

Definitions

"MDEQ" means the Michigan Department of Environmental Quality, its successor entities, and those persons or entities acting on its behalf.

"Owner" means, at any given time, the then current title holder of the Property or any portion thereof.

"Owners Subsequent to Plainwell" means, at any given time, the then current title holder of the Property or any portion thereof, except for Plainwell Inc.

"Plainwell" shall mean Plainwell Inc., the owner of the Property as of the date of the execution of this Restrictive Covenant, and the Owner for as long as Plainwell Inc. is a current title holder of the Property or any portion thereof.

"USEPA" shall mean the United States Environmental Protection Agency, its successor entities and those persons or entities acting on its behalf.

All other terms used in this document which are defined in Part 3, Definitions, of the NREPA; Part 201 of the NREPA; or the Part 201 Administrative Rules ("Part 201 Rules"), 1990 AACS R 299.5101 et seq., shall have the same meaning in this document as in Parts 3 and 201 of the NREPA and the Part 201 Rules, as of the date of filing of this Restrictive Covenant.

NOW THEREFORE,

Plainwell Inc., as Owner of the Property, hereby declares and covenants that the Property shall be subject to the following restrictions and conditions:

Declaration of Land Use or Resource Use Restrictions

- 1. The Owner shall prohibit all uses of the Property that are not compatible with the Property's zoned industrial land use designation, the limited industrial land use category under Section 20120a(1)(i) of the NREPA or other use that is consistent with the assumptions and basis for the cleanup criteria developed pursuant to Section 20120a(1)(i) of the NREPA. Cleanup criteria for land use-based response activities are located in the Government Documents Section of the State of Michigan Library.
- 2. The Owner shall prohibit use of the Property or portions thereof, for any of the following purposes:

- (a) A residence, including any mobile home or factory built housing, constructed or installed for use as residential human habitation;
 - (b) A hospital for humans.
 - (c) A public or private school for persons under 21 years of age.
 - (d) A day care center for children.
 - (e) Any purpose involving residential occupancy on a 24-hour basis.
- (f) Any other use that would disturb or penetrate the landfill cover or erosion control system as set forth in the ROD.
- 3. Owners Subsequent to Plainwell shall prohibit activities, and Plainwell shall not perform any activities, on the Property that may result in exposures above levels established in the ROD. These prohibited activities include:
 - (a) Any excavation, drilling, penetration or other disturbance of the surface or subsurface soils on the Property except as necessitated for compliance with the O&M plan or conducted in accordance with any work plan approved or modified by U.S. EPA with MDEQ concurrence. All excavation, drilling, penetration or other disturbance of the surface or subsurface soils on the Property must be conducted in accordance with a health and safety plan that complies with the Occupational Safety and Health Act of 1970, 20 CFR 1910.120 and the Michigan Occupational Safety and Health Act.
 - (b) Any construction of buildings on the Property unless plans are submitted to and approved by the MDEQ and U.S. EPA. Any new construction must satisfy the indoor air inhalation criteria of Part 201.
- 4. Owners Subsequent to Plainwell shall prohibit activities, and Plainwell shall not perform any activities, on the Property that may interfere with any element of the ROD, including the performance of operation and maintenance activities, monitoring, or other measures necessary to ensure the effectiveness and integrity of the remedy.
- 5. The MDEQ or USEPA may require modifications to the restrictions contained in this Restrictive Covenant as necessary to assure the integrity and effectiveness of the remedial action required under the ROD or assure the protection of the public health, safety, welfare and the environment.
- 6. Owners Subsequent to Plainwell shall comply with the applicable requirements of Section 20107a of the NREPA and Part 10 of the Part 201 Administrative Rules.
- 7. Permanent Markers. The Owner shall not remove, cover, obscure, or otherwise alter or interfere with the permanent markers placed on the Property pursuant to the ROD. Owners Subsequent to Plainwell shall keep vegetation and other materials clear of the permanent markers to assure that the markers are readily visible.

- 8. Contaminated Soil Management. Owners Subsequent to Plainwell shall manage all soils, media and/or debris located on the Property in accordance with, and Plainwell shall refrain from managing soils, media and/or debris located on the Property in contravention of, the applicable requirements of Section 20120c of the NREPA; Part 111, Hazardous Waste Management, of the NREPA; Subtitle C of the Resource Conservation and Recovery Act, 42 U.S.C. Section 6901 et seq.; the administrative rules promulgated thereunder; and all other relevant state and federal laws.
- 9. Access. The Owner shall grant to the MDEQ, USEPA, as a third-party beneficiary, and their designated representatives an irrevocable, permanent and continuing right of access to enter the Property at reasonable times for the purpose of:
 - (a) Overseeing and/or implementing the response actions required in the ROD, including but not limited to installation of a landfill cover system that complies with the relevant portions of Part 201 of the NREPA and conducting any necessary inspection and repair of the capped areas;
 - (b) Verifying any data or information submitted to USEPA and/or MDEQ and determining and monitoring compliance with the ROD and any implementing Statement of Work;
 - (c) Verifying that no action is being taken on the Property in violation of the terms of this instrument or of any federal or state environmental laws or regulations;
 - (d) Monitoring response actions at the 12th St. Operable Unit and at the Site and conducting investigations relating to contamination on or near the Site, including, without limitations, sampling of air, water, sediments, soils, and specifically, without limitation, obtaining split or duplicate samples;
 - (e) Conducting periodic reviews of the response action, including but not limited to, reviews required by applicable statutes and/or regulations; and
 - (f) Implementing additional or new response actions if USEPA and the MDEQ determine: i) that such actions are necessary to protect public health, safety, welfare, or the environment because either the response action has proven to be ineffective or because new technology has been developed which will accomplish the purposes of the response action in a significantly more efficient or cost effective manner; and, ii) that the additional or new response actions will not impose any significantly greater burden on the Property or unduly interfere with the then existing uses of the Property.

Nothing in this Restrictive Covenant shall limit or otherwise affect USEPA's or MDEQ's right of entry and access or authorities to take response activities pursuant to CERCLA, the National Contingency Plan, 40 C.F.R. Part 300, Part 201 of the NREPA and the successor statutory provisions, or state or federal law.

10. Transfer of Interest. The Owner shall provide notice to the USEPA and MDEQ of the Owner's intent to transfer any interest in the Property at least fourteen (14) business days prior to consummating the conveyance. A conveyance of title, easement, or other interest in the Property

shall not be consummated by the Owner unless the Owner complies with the applicable provisions of Section 20116 of the NREPA. A copy of this Restrictive Covenant shall be provided to all future owners, heirs, successors, lessees, easement holders, assigns, and transferees by the person transferring the interest. The Owner shall include in any instrument conveying any interest in the Property or portion thereof, including but, not limited to, deeds, leases, and mortgages a notice which is in substantially the following form:

NOTICE: THE INTEREST CONVEYED HEREBY IS SUBJECT TO A DECLARATION OF RESTRICTIVE COVENANT, DATED _____, 200_, AND RECORDED WITH THE ALLEGAN COUNTY REGISTER OF DEEDS, LIBER ___, PAGE .

11. Notices. Any notice, demand, request, consent, approval, or communication that is required to be made or obtained under this Restrictive Covenant shall be made in writing and include a statement that the notice is being made pursuant to the requirements of this Restrictive Covenant, MDEQ Reference Number RC-RRD-03-052 and U.S. ÉPA Site No. 059B and shall be served either personally or sent via first class mail, postage prepaid, as follows:

For USEPA:

Mr. Timothy Prendiville Remedial Project Manager

U.S. EPA

77 West Jackson Blvd. SR-6J Chicago, Illinois 60604

Eileen L. Furey

Associate Regional Counsel

U.S. EPA Region 5

77 West Jackson Blvd. C-14J

Chicago, IL 60604

For MDEQ:

Director

Michigan Department of Environmental Quality

P.O. Box 30473

Lansing, Michigan 48909-7973

12. Term and Enforcement of Restrictive Covenant. This Restrictive Covenant shall run with the Property and shall be binding on the Owner; future owners; and all current and future successors, lessees, easement holders, their assigns, and their authorized agents, employees, or persons acting under their direction and control. This Restrictive Covenant may only be modified or rescinded with the written approval of the USEPA and MDEQ.

The State of Michigan, through the MDEQ, the Owner, and the United States on behalf of USEPA, as a third party beneficiary, may enforce the restrictions set forth in this Restrictive Covenant by legal action in a court of competent jurisdiction.

13. Severability. If any provision of this Restrictive Covenant is held to be invalid by any court of competent jurisdiction, the invalidity of such provision shall not affect the validity of

any other provisions hereof, and all such other provisions shall continue unimpaired and in full force and effect.

- 14. Authority to Execute Restrictive Covenant. The undersigned person executing this Restrictive Covenant is the Owner and represents and certifies that he or she is duly authorized and has been empowered to execute and deliver this Restrictive Covenant.
- 15. Nothing in this Restrictive Covenant affects Plainwell's obligations, if any, under Part 201 of the NREPA, CERCLA, or other State or federal laws, subject to the terms and limitations of the Environmental Settlement Agreement, dated as of October 29, 2003, as may be amended from time to time, among: (a) the United States of America, on behalf of the United States Environmental Protection Agency, the United States Department of the Interior, and the National Oceanic and Atmospheric Administration of the United States Department of Commerce, and including all departments, agencies and instrumentalities of the United States; (b) the State of Michigan, on behalf of Michael A. Cox, Attorney General for the State of Michigan, the Michigan Department of Environmental Quality, and all other departments, agencies and instrumentalities of the State of Michigan; (c) Colonial Heights Packaging, Inc.; (d) Philip Morris USA, Inc.; (e) Chesapeake Corporation; (f) Simpson Paper Company; (g) Plainwell Holding Company; and (h) Plainwell Inc., the final version of which, after publication in the Federal Register for the thirty-day public comment period specified by 42 U.S.C. § 9622(i), will be filed with the United States District Court for the District of Delaware.

IN WITNESS WHEREOF, Plainwell Inc. has caused this Restrictive Covenant to be executed on this 20 th day of Mance , 2004.

Plainwell Inc.

Its: SVP - Chief Financial Officer

LIBER 2662

PAGE 625

STATE OF MICHIGAN

COUNTY OF ALLEGAN

Personally came before me this 20 day of $\sqrt[4]{arch}$, 2004, the above-named Jeff Arnesen as Chief Financial Officer of Plainwell, Inc. to me known to be the person who executed the foregoing instrument an acknowledge the same.

RENEE ARLEEN WEISS

NOTARY PUBLIC
MINNESOTA
My Commission Expires Jan 31 2005

Notary Public

[Print or type name]

[Commissioned in] County, How

My Commission Expires: San 31, 200

This instrument was prepared by And after recording, should be returned to:

Pamela E. Barker Godfrey & Kahn, S.C. 780 North Water Street Milwaukee, WI 53202

EXHIBIT 1

LEGAL DESCRIPTION OF PROPERTY

All that part of the east ½, lying West and South of the Kalamazoo River and described as: Commencing at a point 2078.3 feet North of the South ½ post of said Section, thence East 377 feet, thence North 264 feet, thence East 255 feet, to the low water mark of the Kalamazoo River, thence Northerly and Westerly along said low water mark of the Kalamazoo River to the North and South ¼ line of Section 24, thence South along said ¼ line to the point of beginning, Section 24, Town 1 North, Range 12 West. Together with an easement for ingress and egress running from subject property to Highway M-89 as set forth in deed recorded in Liber 487 on Page 112.

JOYCE A. WATTS ALLEGAN COUNTY REGISTER OF DEEDS OFFICE 4/23/2004 9:04:41 AM

RECEIPT M50536, REGISTER 3 , Cashier: LB

RESTRICTIONS		\$41.00
	TOTAL \$	\$41.00
	CHEÇK	\$41.00
	CHANGE	\$0.00

374

RECTO MAR 2 8 2005

STATE OF MICHIGAN
ALLEGAN COUNTY
RECORDED

25 HAR 2005 8:30:43 AM
JOYCE A. WATTS
REGISTER OF DEEDS

DECLARATION OF RESTRICTIVE COVENANTS AND ENVIRONMENTAL PROTECTION EASEMENT

MDEO Reference No.: RC-RRD-03-052

U.S. EPA Site No.: 059B

This Declaration of Restrictive Covenants and Environmental Protection Easement is made by and between Plainwell Inc., a Delaware Corporation, Grantor; the Michigan Department of Environmental Quality ('MDEQ" or "Grantee"), having an address c/o Director, Michigan Department of Environmental Quality, P.O. Box 30473, Lansing, Michigan 48909-7973, Grantee, and the United States of America and its assigns ("Third Party Beneficiary"), having an address c/o the United States Environmental Protection Agency ("U.S. EPA"), Attn: Director, Superfund Division, Region 5, 77 W. Jackson Blvd. SR-6J, Chicago, Illinois 60604.

This Declaration of Restrictive Covenants and Environmental Protection Easement has been recorded with the Allegan County Register of Deeds for the purpose of protecting public health, safety, and welfare, and the environment by: (1) granting a right of access to the U.S. EPA and MDEQ and their authorized representatives to monitor and conduct Response Activities, as that term is defined below; and (2) restricting unacceptable exposures to hazardous substances located on the 12th Street Landfill property, as legally described on Exhibit 1 hereto ("Property"); (3) assuring that the use of Property is consistent with the exposure assumptions and control measures required pursuant to the Record of Decision ("ROD") issued by MDEQ and concurred with by the U.S. EPA on September 28, 2001 pursuant to the Comprehensive Environmental Response, Compensation and Liability Act, 42 U.S.C. § 9601 et seq. ("CERCLA"); and (4) preventing damage or disturbance of any element of the remedial action constructed on the Property.

The Property is part of the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site (the "Site"). The Site was placed on the National Priorities List on August 30, 1990, and is a facility, as that term is defined in Section 101(9) of CERCLA and Section 20101(0) of Part 201, Environmental Remediation, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended, MCL 324.20101(0) et seq. ("NREPA"). The Property comprises a portion of the 12th Street Operable Unit #4 of the Site for which on-going remedial actions are being conducted in accordance with the ROD. Information pertaining to the environmental conditions at the Property and the remedial actions to be undertaken at the Property is on file with the U.S. EPA and the MDEQ,

Docting + 1 IN UP Stucker

Remediation and Redevelopment Division.

The restrictions contained in this Declaration of Restrictive Covenants and Environmental Protection Easement are based upon information available to the U.S. EPA and MDEQ at the time the ROD was issued. Failure of the remedial action to achieve and maintain the criteria, exposure controls, and requirements specified in the ROD; future changes in the environmental condition of the Property or changes in the cleanup criteria developed under CERCLA and the NREPA; the discovery of environmental conditions at the Property that were not accounted for in the ROD; or use of the Property in a manner inconsistent with the restrictions described herein, may result in this Declaration of Restrictive Covenants and Environmental Protection Easement not being protective of public health, safety, and welfare, and the environment.

Property Identification Number: 0317-024-047-00

Exhibit 2 provides a survey of the Property that is subject to the land use or resource use restrictions specified herein.

Summary of Response Activities

The Property was historically used as a landfill for wastes and residuals associated with the manufacturing and recycling of paper. Between 1993 and 1997 Plainwell Inc. conducted a remedial investigation and feasibility study regarding the nature and extent of contamination at the Property. Remedial activities required by the ROD to assure the protection of public health, safety and welfare, and the environment and ensure the integrity of the remedy include, but are not necessarily limited to: the construction of a landfill cap and containment systems to contain paper residuals and soils and sediments contaminated with polychlorinated biphenyls ("PCBs) and prevent the erosion of PCB contaminated materials into the Kalamazoo River, construction and maintenance of a fence; construction, operation and maintenance of groundwater monitoring system; and establishment of the land use and resource use restrictions contained herein.

Definitions

"MDEQ" means the Michigan Department of Environmental Quality, its successor entities, and those persons or entities acting on its behalf.

"Owner" means, at any given time, the then current rifle holder of the Property or any portion thereof.

"Owners Subsequent to Plainwell" means, at any given time, the then current title holder of the Property or any portion thereof except for Plainwell Inc.

"Plainwell" shall mean Plainwell Inc., the owner of the Property as of the date of the execution of this Declaration of Restrictive Covenants and Environmental Protection Easement, and the Owner for as long as Plainwell Inc. is a current title holder of the Property or any portion thereof.

"Response Activities" shall mean, consistent with Section 101(25) of CERCLA, such actions

as have been or may be necessary to conduct any removal, remedy or remedial action, as those terms are defined in Sections 101(23) and 101(24) of CERCLA, at the Property and/or at the Site, including enforcement activities related thereto.

"U.S. EPA" shall mean the United States Environmental Protection Agency, its successor entities and those persons or entities acting on its behalf.

All other terms used in this document which are defined in Part 3, Definitions, of the NREPA; Part 201 of the NREPA; or the Part 201 Administrative Rules ("Part 201 Rules"), 1990 AACS R 299.5101 et seq., shall have the same meaning in this document as in Parts 3 and 201 of the NREPA and the Part 201 Rules, as of the date of filing of this Declaration of Restrictive Covenants and Environmental Protection Easement.

NOW THEREFORE,

Grantor, on behalf of itself, its successors and assigns, in consideration of the terms of the Settlement Agreement in the jointly administered cases in the United States District Court for the District of Delaware: In re: Plainwell, Inc., et al., Case No. 00-4350 (JWV), and Weyerhaeuser v. Plainwell, Inc. and Plainwell Holding Company, Case No. 04-CV-16 (KAJ), covenants and declares that the Property shall be subject to the restrictions on use set forth below, and conveys and warrants to the Grantee, and its assigns and to the United States of America, and its assigns, as Third Party Beneficiary: 1) an environmental protection easement, the nature, character, and purposes for which are set forth herein; and 2) the right to enforce said use restrictions.

Declaration of Land Use or Resource Use Restrictions

- 1. The Owner shall prohibit all uses of the Property that are not compatible with the Property's zoned industrial land use designation, the limited industrial land use category under Section 20120a(1)(i) of the NREPA or other use that is consistent with the assumptions and basis for the cleanup criteria developed pursuant to Section 20120a(1)(i) of the NREPA. Cleanup criteria for land use-based Response Activities are located in the Government Documents Section of the State of Michigan Library.
 - 2. The Owner shall prohibit use of the Property or portions thereof, for any of the following purposes:
 - (a) A residence, including any mobile home or factory built housing, constructed or installed for use as residential human habitation;
 - (b) A hospital for humans.
 - (c) A public or private school for persons under 21 years of age.
 - (d) A day care center for children,
 - (e) Any purpose involving residential occupancy on a 24-hour basis.

- (f) Any other use that would disturb or penetrate the landfill cover or erosion control system as set forth in the ROD.
- 3. Owners Subsequent to Plainwell shall prohibit activities, and Plainwell shall not perform any activities, on the Property that may result in exposures above levels established in the ROD. These prohibited activities include:
 - (a) Any excavation, drilling, penetration or other disturbance of the surface or subsurface soils on the Property except as necessitated for compliance with the O&M plan or conducted in accordance with any work plan approved or modified by U.S. EPA with MDEQ concurrence. All excavation, drilling, penetration or other disturbance of the surface or subsurface soils on the Property must be conducted in accordance with a health and safety plan that complies with the Occupational Safety and Health Act of 1970, 20 C.F.R. 1910.120 and the Michigan Occupational Safety and Health Act.
 - (b) Any construction of buildings on the Property unless plans are submitted to and approved by the MDEQ and U.S. EPA. Any new construction must satisfy the indoor air inhalation criteria of Part 201.
- 4. Owners Subsequent to Plainwell shall prohibit activities, and Plainwell shall not perform any activities, on the Property that may interfere with any element of the ROD, including the performance of operation and maintenance activities, monitoring, or other measures necessary to ensure the effectiveness and integrity of the remedy.
- 5. The MDEQ or U.S. EPA may require modifications to the restrictions contained in this Declaration of Restrictive Covenants and Environmental Protection Easement as necessary to assure the integrity and effectiveness of the remedial action required under the ROD or assure the protection of the public health, safety, welfare and the environment.
- 6. Owners Subsequent to Plainwell shall comply with the applicable requirements of Section 20107a of the NREPA and Part 10 of the Part 201 Administrative Rules.
- 7. Permanent Markers. The Owner shall not remove, cover, obscure, or otherwise alter or interfere with the permanent markers placed on the Property pursuant to the ROD. Owners Subsequent to Plainwell shall keep vegetation and other materials clear of the permanent markers to assure that the markers are readily visible.
- 8. Contaminated Soil Management. Owners Subsequent to Plainwell shall manage all soils, media and/or debris located on the Property in accordance with, and Plainwell shall refrain from managing soils, media and/or debris located on the Property in contravention ok the applicable requirements of Section 20120c of the NREPA; Part 111, Hazardous Waste Management, of the NREPA; Subtitle C of the Resource Conservation and Recovery Act, 42 U.S.C. Section 6901 et seq.; the administrative rules promulgated thereunder, and all other relevant state and federal laws.

Environmental Protection Easement

9. Access. Grantor grants to Grantee, and its assigns, and to the United States of America, and its

1

EXHIBIT 1

LEGAL DESCRIPTION OF PROPERTY

All that part of the east ½, lying West and South of the Kalamazoo River and described as: Commencing at a point 2078.3 feet North of the South ½ post of said Section, thence East 377 feet, thence North 264 feet, thence East 255 feet, to the low water mark of the Kalamazoo River, thence Northerly and Westerly along said low water mark of the Kalamazoo River to the North and South ¼ line of Section 24, thence South along said ¼ line to the point of beginning, Section 24, Town 1 North, Range 12 West. Together with an easement for ingress and egress running from subject property to Highway M-89 as set forth in deed recorded in Liber 487 on Page 112.

STATE OF MINNESOTA COUNTY OF HENNEPIN

Personally came before me this <u>lo</u> day of <u>Moxch</u>, 2005, the abovenamed Jeff Arnesen as Chief Financial Officer of Plainwell, Inc., to me known to be the person who executed the foregoing instrument and acknowledged the same.

RENEE ARLEEN WEISS
NOTARY PUBLIC - MANNESOTA
NY COMMISSION EXPIRES DIGITIZATE

Notary Public

Mence Arken Weiss

[Print or type name]
Commissioned in County Hennepin
My Commission Expires:

This instrument was prepared by and after recording, should be returned to:

Pamela E. Barker Godfrey & Kahn, S.C. 780 North Water Street Milwaukee, WI 53202 Grantor, its successors and assigns, including all lessees, easement holders, their assigns, and their authorized agents, employees, or persons acting under their direction and control. This Declaration of Declaration of Restrictive Covenants and Environmental Protection Easements and Environmental Protection Easement may only be modified or rescinded with the written approval of the U.S. EPA and MDEQ.

The State of Michigan, through the MDEQ, the Owner, and the United States on behalf of U.S. EPA, as a Third Party Beneficiary, may enforce the restrictions set forth in this Declaration of Declaration of Restrictive Covenants and Environmental Protection Easements and Environmental Protection Easement by legal action in a court of competent jurisdiction.

- 13. Severability. If any provision of this instrument is held to be invalid by any court of competent jurisdiction, the invalidity of such provision shall not affect the validity of any other provisions hereof and all sue. & other provisions shall continue unimpaired and in full force and effect.
- 14. Authority to Execute Declaration of Declaration of Restrictive Covenants and Environmental Protection Easements and Environmental Protection Easement. The undersigned person executing this instrument is the Owner and represents and certifies that he or she is duly authorized and has been empowered to execute and deliver this Declaration of Declaration of Restrictive Covenants and Environmental Protection Easements and Environmental Easement.
- 15. Nothing in this Declaration of Restrictive Covenants and Environmental Protection Easement affects Plainwell's obligations, if any, under Part 201 of the NREPA, CERCLA, or other State or federal laws, subject to the terms and limitations of the Environmental Settlement Agreement, dated as of October 29, 2003, as may be amended from time to time, among: (a) the United States of America, an behalf of the United States Environmental Protection Agency, the United States Department of the Interior, and the National Oceanic and Atmospheric Administration of the United States Department of Commerce, and including all departments, agencies and instrumentalities of the United States; (b) the State of Michigan, on behalf of Michael A. Cox, Attorney General for the State of Michigan, the Michigan Department of Environmental Quality, and all other departments, agencies and instrumentalities of the State of Michigan; (e) Colonial Heights Packaging, Inc.; (d) Philip Morris USA, Inc.; (e) Chesapeake Corporation; (f) Simpson Paper Company (g) Plainwell Holding Company; and (h) Plainwell Inc., the final version of which, after publication in the Federal Register for the thirty-day public comment period specified by 42 U.S.C. § 9622(i), will be flied with the United States District Court for the District of Delaware.

IN WITNESS WHEREOF, Plainwell Inc. has caused this Declaration of Restrictive Covenants and Environmental Protection Easement to be executed on this 16th day of Market, 2005.

Plainwell Inc.

Name: Jeff

Its: SVP - Chief Financial Officer

transferees by the person transferring the interest. The Owner shall include in any instrument conveying any interest in the Property or portion thereafter including but, not limited to, deeds, leases, and mortgages a notice which is in substantially the following form:

NOTICE: THE INTEREST CONVEYED HEREBY IS SUBJECT TO A DECLARATION OF RESTRICTIVE COVENANTS AND ENVIRONMENTAL PROTECTION EASEMENT, DATED _____, 200__, AND RECORDED WITH THE ALLEGAN COUNTY REGISTER OF DEEDS, LIBER , PAGE

11. Notices. Any notice, demand, request, consent, approval, or communication that is required to be made or obtained under this Declaration of Restrictive Covenants and Environmental Protection Easement shall be made in writing and include a statement that the notice is being made pursuant to the requirements of this Declaration of Restrictive Covenants and Environmental Protection Easement, MDEQ Reference Number RC-RRD-03-052 and U.S. EPA Site No. 059B, and shall be served either personally or sent via first class mail, postage prepaid, as follows:

For U.S. EPA:

Director Superfund Division U.S. EPA 77 West Jackson Blvd. SR-6J Chicago, Illinois 60604

with a copy to:

Eileen L. Furey.

Associate Regional Counsel

U.S. EPA Region 5

77 West Jackson Blvd. C-14J

Chicago, IL 60604

For MDEQ:

Director

Michigan Department of Environmental Quality

P.O. Box 30473

Lansing, Michigan 48909-7973

with a copy to:

Suzanne D. Sonneborn

Assistant Attorney General

Environment, Natural Resources, and Agriculture Division

Michigan Department of Attorney General

525 W. Ottawa St.

Lansing, Michigan 48933

12. Term and Enforcement of Declaration of Restrictive Covenants and Environmental Protection Easement. This Declaration of Declaration of Restrictive Covenants and Environmental Protection Easements and Environmental Protection Easement shall run with the land and shall be binding on the

assigns, a Third Party Beneficiary, an irrevocable and continuing right of access at all reasonable times to the Mill Property for the purposes of:

- (a) Overseeing and/or implementing the remedial action required in the ROD, including but not limited to installation of a landfill cover system that complies with the relevant portions of Part 201 of the NREPA and conducting any necessary inspection and repair of the capped areas;
- (b) Verifying any data or information submitted to U.S. EPA and/or MDEQ and determining and monitoring compliance with the ROD and any implementing Statement of Work;
- (c) Verifying that no action is being taken on the Property in violation of the terms of this instrument or of any federal or state environmental laws or regulations;
- (d) Monitoring Response Activities at the 12th St. Operable Unit and at the Site and conducting investigations relating to contamination on or near the Site, including, without limitations, sampling of air, water, sediments, soils, and specifically, without limitation, obtaining split or duplicate samples;
- (e) Conducting periodic reviews of the Response Activities at the Property and at the Site, including but not limited to, reviews required by applicable statutes and/or regulations; and
- (f) Implementing additional or new Response Activities if U.S. EPA and the MDEQ determine:
 - i) that such activities are necessary to protect public health, safety, welfare, or the environment because either the remedial action has proven to be ineffective or because new technology has been developed which will accomplish the purposes of the remedial action in a significantly more efficient or cost effective manner; and
 - ii) that the additional or new Response Activities will not impose any significantly greater burden on the Property or unduly interfere with the then existing uses of the Property.

Nothing in this instrument shall limit or otherwise affect U.S. EPA's or MDEQ's right of entry and access or authorities to take Response Activities as defined in this instrument, as well as in Section 20101(1)(ee) of Part 201 of the NREPA, under CERCLA, the National Contingency Plan, the National Contingency Plan, 40 C.F.R. Part 300, the NREPA, and any successor statutory provisions, or other state or federal law.

10. Transfer of Interest. The Owner shall provide notice to the U.S. EPA and MDEQ of the Owner's intent to transfer any interest in the Property at least fourteen (14) business days prior to consummating the conveyance. A conveyance of title, easement, or other interest in the Property shall not be consummated by the Owner unless the Owner complies with the applicable provisions of Section 20116 of the NREPA. A copy of this Declaration of Restrictive Covenants and Environmental Protection Easement shall be provided to all future owners, heirs, successors, lessees, easement holders, assigns, and

Amendment to Declaration of Restrictive Covenants and Environmental Protection Easement

MDEO Reference No.: RC-RRD-03-052

U.S. EPA Site No.: 059B

Pursuant to Paragraph 12 of the Declaration of Restrictive Covenants and Environmental Protection Easement executed on March 16, 2005 and recorded on March 25, 2005 in the Allegan County Register of Deeds at Liber 2811, pages 584-593 ("2005 Declaration of Restrictive Covenant," or "2005 DRC"), the undersigned Parties agree to modify the 2005 DRC as set forth in this document ("Amendment to Declaration of Restrictive Covenants and Environmental Protection Easement," or "Amendment").

Parties

Weyerhaeuser Company purchased the Property as defined in the 2005 DRC from Plainwell, Inc. by deed dated August 29, 2008. Weyerhaeuser Company subsequently conveyed the Property to its subsidiary, Weyerhaeuser NR Company (WNR) by deed dated January 1, 2009. WNR is both an Owner and an Owner Subsequent to Plainwell Inc. as defined in the 2005 DRC. In accordance with the terms of the 2005 DRC, the obligations and restrictions of the 2005 DRC are applicable to and binding on WNR at the time of the execution of this Amendment. WNR is authorized to execute this Amendment. The Michigan Department of Environmental Quality (MDEQ), as the Grantee of the 2005 DRC, and the United States of America, by and through the United States Environmental Protection Agency (U.S. EPA), as the Third Party Beneficiary of the 2005 DRC, are the other two Parties to this Amendment. (WNR, MDEQ and U.S.EPA are referred to collectively as the "Parties".)

Amending Language:

The Parties agree to amend the 2005 DRC as follows:

- 1. The definition of "owner" in the Definitions section on page 585 of Liber 2811 is amended to read as follows:
- "'Owner' means, at any given time, the then current title holder of the Property or any portion thereof."
- 2. Paragraph 3 on page 587 of Liber 2811 is amended to add subparagraph (3)(c):
- "(c) Any construction of or use of wells or other devices on the Property to extract groundwater for consumption, irrigation, or any other use, except for wells and devices that are necessary for Response Activities or testing and monitoring groundwater contamination levels in accordance with plans approved by the MDEQ or the U.S. EPA is prohibited. Short-term dewatering for construction purposes is permitted provided the dewatering, including management and disposal of the groundwater, is conducted in accordance with all applicable local, state, and federal laws and regulations and does not cause or result in a new release, exacerbation of existing contamination, or any other violation of local, state, and federal environmental laws and regulations including, but not limited to, Part 201 of the NREPA."
- 3. Paragraph 11 on page 589 of Liber 2811 is amended as follows:
 - Strike "Eileen L. Furey" and add "Leslie Kirby-Miles" for U.S. EPA Associate Regional Counsel contact.
 - Strike "Suzanne D. Sonneborn" and add "Assistant in Charge" for Michigan Department of Attorney General contact.

The Amendment will become effective upon all Parties signatures. The remainder of the Declaration of Restrictive Covenants and Environmental Protection Easement remains in full force and effect.

Weyerhaeuser NR Company	
	`
STATE OF WASHINGTON))ss.
COUNTY OF KING)

On this _	day of	, 2012, before me,	the undersigned, a Notary Public in and
for the St	ate of Washing	ton, personally appeared	
known to	me to be the _	of Weyerhaeus	er NR Company, the corporation that
executed	the foregoing in	nstrument, and acknowledged	the said instrument to be the free and
voluntary	act of said corp	poration, for the uses and purp	oses therein mentioned, and on oath stated
that he is	authorized to e	xecute said instrument.	
WITNES written.	S MY HAND A	AND OFFICIAL SEAL hereto	affixed the day and year first above
N	ame		
		IC in and for the State of	
M M	astungton, resi- y commission (ding atexpires	~-

Michigan Department of Environmental Quality Acting Chief, Remediation Division
STATE OF MICHIGAN)
)ss. COUNTY OF JUNE) On this 12 day of June , 2012, before me, the undersigned, a Notary Public in and for the State of Michigan, personally appeared Apple 12 Countries
On this 12 day of 1000, 2012, before me, the undersigned, a Notary Public in and
for the State of Michigan, personally appeared Anat P. Coctures
known to me and executed the foregoing instrument find ration, and acknowledged
the said instrument to be the free and voluntary act, for the uses and purposes therein mentioned.
WITNESS MY HAND AND OFFICIAL SEAL hereto affixed the day and year first above written.
Name Soute
NOTARY PUBLIC in and for the State of Michigan, residing at County of Appointment: My commission expires 9/15/2012

Anne P. Couture

Rid CKe
Richard C. Karl, Director Superfund Division
U.S. EPA
STATE OF ILLINOIS)
COUNTY OF Cook)
On this 1274 day of JUNE, 2012, before me, the undersigned, a Notary Public in and
for the State of Illinois, personally appeared RICHARD C. KARL known
to me and executed the foregoing instrument, Amendment to Declaration of Restrictive
Covenants and Environmental Protection Easement, and acknowledged the said instrument to be
the free and voluntary act, for the uses and purposes therein mentioned.
WITNESS MY HAND AND OFFICIAL SEAL hereto affixed the day and year first above written.
JOHN V. FAGIOLO
Name
JOHN V FAGIOLO
NOTARY PUBLIC in and for the State of MY COMMISSION EXPIRES 03/13/14
Illinois, residing at CHICAGO COOK COUNTY My commission expires 3/13/14
· · · · · · · · · · · · · · · · · · ·

Attachment 7 Restrictive Covenant for OU 7

LIBER 2811 PAGE 594

ENVIRONMENTAL PROTECTION EASEMENT AND DECLARATION OF RESTRICTIVE COVENANT

MDEQ Reference No: RC-RRD-201-05-001 U.S. EPA Site No: 059B

This Environmental Protection Easement and Declaration of Restrictive Covenant is made by and between **Plainwell Inc.**, a Delaware, Corporation, ("Grantor"); the **Michigan Department of Environmental Quality** ("MDEQ" or "Grantee"), having an address c/o Director, Michigan Department of Environmental Quality, P.O. Box 30473, Lansing, Michigan 48909-7973; and the **United States of America** and its assigns ("Third Party Beneficiary"), having an address c/o the United States Environmental Protection Agency ("U.S. EPA"), Attn: Director, Superfund Division, Region 5, 77 W. Jackson Blvd. SR-6J, Chicago, Illinois 60604.

This Environmental Protection Easement and Declaration of Restrictive Covenant has been recorded with the Allegan County Register of Deeds for the purpose of protecting public health, safety and welfare, and the environment by: (1) granting a right of access to the U.S. EPA and the MDEQ and their authorized representatives to monitor and conduct Response Activities, as that term is defined below; and (2) prohibiting or restricting activities that could result in unacceptable exposure to environmental contamination present at the Plainwell mill property, as legally described in Exhibit 1 attached hereto ("Mill Property").

The Mill Property is part of the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site (the "Site"). The Site was placed on the National Priorities List ("NPL") on August 30, 1990, and is a facility, as that term is defined in Section 101(9) of the Comprehensive Environmental Response, Compensation and Liability Act, 42 U.S.C. § 9601 et seq. ("CERCLA") and Section 20101(0) of Part 201, Environmental Remediation, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended, MCL 324.20101(0) et seq. ("NREPA"). The Mill Property has been subject to Response Activities pursuant to the NREPA, in a manner consistent with CERCLA, for environmental contamination related to the Site. Response Activities at the Mill Property are the subject of a Consent Decree entered into by the United States and Weyerhaeuser Company, which was lodged with the District Court of Delaware on January 3, 2005, a copy of which is attached hereto as Exhibit 2 (the "Consent Decree"). Information pertaining to the environmental conditions at the Mill Property and Response Activities undertaken at the Site is on file with U.S. EPA and the MDEQ, Remediation and Redevelopment Division.

The restrictions contained in this Restrictive Covenant are based upon information available to U.S. EPA and the MDEQ at the date this instrument is recorded. The discovery of environmental conditions at the Mill Property unknown as of the recording date of this instrument, or use of the Mill Property in a manner inconsistent with the restrictions described herein, may result in this Restrictive Covenant not being protective of public health, safety, and welfare, and the environment.

Property Identification Number:	See Exhibit 3 attached
•	

Exhibit 1 provides a legal description and survey of the Mill Property that is subject to the land use or resource use restrictions specified herein.

Summary of Response Activities

The Mill Property was historically used to manufacture and recycle paper. In 1997, Plainwell Inc. conducted a Phase I Environmental Assessment and Phase II Investigation for the Mill Property. Based on the results of the Phase I and Phase II investigations, as well as other information regarding the Mill Property, U.S. EPA and MDEQ concluded that Response Activities should be performed to ensure the protection of human health and the environment. Pursuant to the Consent Decree, Weyerhaeuser will perform a Remedial Investigation/Feasibility Study regarding the nature and extent of hazardous contamination at the Mill Property, and will perform the remedial action to be selected by U.S. EPA in a Record of Decision ("ROD") for the Mill Property.

Definitions

"MDEQ" means the Michigan Department of Environmental Quality, its successor entities, if any, and those authorized persons or entities acting on its behalf.

"Owner" means, at any given time, the then current title holder of the Mill Property, or any portion thereof.

"Owners Subsequent to Plainwell" means, at any given time, the then current title holder of the Mill Property or any portion thereof, except for Plainwell Inc.

"Plainwell" shall mean Plainwell Inc., the owner of the Mill Property as of the date of the execution of this Environmental Protection Easement and Declaration of Restrictive Covenant, and the Owner for as long as Plainwell Inc. is a current title holder of the Mill Property or any portion thereof.

"Response Activities" shall mean, consistent with Section 101(25) of CERCLA, such actions as have been or may be necessary to conduct any removal, remedy or remedial action, as those terms are defined in Sections 101(23) and 101(24) of CERCLA, at the Mill Property and/or at the Site, including enforcement activities related thereto.

"U.S. EPA" shall mean the United States Environmental Protection Agency, its successor entities and those persons or entities acting on its behalf.

All other terms used in this document which are defined in Part 3, Definitions, of the NREPA: Part 201 of the NREPA: or the Part 201 Administrative Rules ("Part 201 Rules"), 1990 AACS R 299.5101 et seq., shall have the same meaning in this document as in Parts 3 and 201 of the NREPA and the Part 201 Rules, as of the recording date of this instrument.

NOW THEREFORE,

Grantor, on behalf of itself, its successors and assigns, in consideration of the terms of the Settlement Agreement in the jointly administered cases in the United States District Court for the District of Delaware: In Re: Plainwell, Inc., et al., Case No. 00-4350 (JWV), and Weyerhaeuser v. Plainwell, Inc. and Plainwell Holding Company, Case No. 04-CV-16 (KAJ), covenants and declares that the Mill Property shall be subject to the restrictions on use set forth below, and conveys and warrants to the Grantee, and its assigns and to the United States of America, and its assigns, as Third Party Beneficiary: 1) an environmental protection easement, the nature, character, and purposes for which are set forth herein; and 2) the right to enforce said use restrictions.

Environmental Protection Easement

- 1. Access. Grantor grants to Grantee, and its assigns, and to the United States of America, and its assigns, as Third Party Beneficiary, an irrevocable and continuing right of access at all reasonable times to the Mill Property for purposes of:
 - a) Conducting and/or monitoring investigations relating to the nature and extent of contamination on or near the Mill Property and/or the Kalamazoo River Operable Unit of the Site including, without limitation, sampling of air, water, sediments, soils, and specifically, without limitation, obtaining split or duplicate samples;
 - b) Monitoring and/or implementing the Response Activities to be selected in a ROD for the Mill Property and/or the Kalamazoo River Operable Unit of the Site;
 - c) Verifying any data or information submitted to U.S. EPA and/or the MDEQ and determining and monitoring compliance with the Consent Decree, any ROD relating to Mill Property and/or the Site and any implementing statement of work;
 - d) Verifying that no action is being taken on the Mill Property in violation of the terms of this instrument, or in violation of any federal or state environmental laws or regulations applicable to any Response Activities at the Mill Property or at the Site;
 - e) Conducting periodic reviews of Response Activities at the Mill Property and at the Site, including but not limited to, reviews required by applicable statutes and/or regulations;
 - f) implementing additional or new Response Activities, as that term is defined above, if the remedial action selected in the ROD for the Mill Property and/or the Kalamazoo River Operable Unit results in any hazardous substances, pollutants or contaminants remaining at the Site above levels that allow for unlimited use and unrestricted exposure. and U.S. EPA, in consultation with MDEO and pursuant to Section 121(c) of CERCLA. determines that, upon its completion, the selected remedy for the Mill Property or the

LIBER 2811 PAGE 597

Kalamazoo River OU will not be protective of public health, welfare or the environment;

g) implementing additional or new response activities, as that term is defined in Section 20101(1)(ee) of the NREPA, if the remedial action selected in the ROD for the Mill Property and/or the Kalamazoo River Operable Unit results in any hazardous substances, pollutants or contaminants remaining at the Site above the criteria developed pursuant to Section 20120a(1)(a) of the NREPA, and MDEO, in consultation with U.S. EPA, determines that, upon its completion, the selected remedy will not be protective of the public health, safety, or welfare, or the environment.

Nothing in this instrument shall limit or otherwise affect U.S. EPA's or the MDEQ's right of entry and access, or authorities to take Response Activities as defined in this instrument, as well as in Section 20101(1)(ee) Part 201 of the NREPA, under CERCLA, the National Contingency Plan, 40 C.F.R. Part 300, the NREPA, and any successor statutory provisions, or other state or federal law.

Declaration of Land Use or Resource Use Restrictions

- Owners Subsequent to Plainwell shall comply with the applicable due care requirements 2. of Section 20107a of the NREPA and Part 10 of the Part 201 Administrative Rules. Owners Subsequent to Plainwell shall exercise due care with respect to any hazardous substance at the Mill Property and, pursuant to CERCLA, will take reasonable steps to stop any continuing release of a hazardous substance; prevent any threatened future release; and prevent or limit human, environmental or natural resource exposure to any previously released hazardous substance.
- 3. Owners Subsequent to Plainwell shall not use the Mill Property in a manner that causes existing contamination to migrate beyond the boundaries of the Mill Property, increases the cost of Response Activities, or otherwise exacerbates the existing contamination located on the Mill Property. The term exacerbation is more specifically defined in Section 20101(1)(n) of the NREPA.
- 4. As Response Activities are performed at the Mill Property and at the Site, the MDEQ and U.S. EPA may require modifications to the restrictions contained in this Environmental Protection Easement and Declaration of Restrictive Covenant to implement necessary Response Activities at the Mill Property or the Site, or to assure the integrity and effectiveness of the remedial action to be selected for the Mill Property and/or the Kalamazoo River Operable Unit of the Site.
- 5. The Owner shall restrict activities at the Mill Property that may interfere with Response Activities at the Mill Property or the Site, including interim response, remedial action, operation and maintenance, monitoring, or other measures necessary to assure the effectiveness and integrity of the remedial action.

Term, Modification and Enforcement of Environmental Protection Easement and **Declaration of Restrictive Covenant**

- This Environmental Protection Easement and Declaration of Restrictive Covenant shall run with land and be binding on the Grantor, its successors and assigns, including all lessees, easement holders, their assigns, and their authorized agents, employees, or persons acting under their direction and control. This Environmental Protection Easement and Declaration of Restrictive Covenant will expire upon the earlier of: (1) notice in the Federal Register announcing deletion of the Site from the NPL because U.S. EPA and the State of Michigan have determined that the Site poses no threat to human health, welfare or the environment, and therefore no additional Response Activities, as that term is defined in this instrument or in Section 20101(1)(ee) of the NREPA, are necessary; or (2) recision of the instrument upon written approval of U.S. EPA and MDEQ pursuant to Paragraph 7, below.
- 7. The Owner may request in writing to U.S. EPA and the MDEQ, at the address given below, modifications to or recision of this instrument. This instrument may be modified or rescinded only with the written approval of U.S. EPA and the MDEQ. Any modification to or recision of this Environmental Protection Easement and Declaration of Restrictive Covenant shall be filed with the appropriate Registrar of Deeds by the then Owner and a certified copy shall be returned to the MDEO and U.S. EPA at the addresses listed above.
- 8. The State of Michigan, through the MDEQ, the Owner, and the United States on behalf of U.S. EPA, as a Third Party Beneficiary, may enforce the easement and restrictions set forth in this Environmental Protection Easement and Declaration of Restrictive Covenant by legal action in a court of competent jurisdiction.
- 9. **Severability.** If any provision of this Environmental Protection Easement and Declaration of Restrictive Covenant is held to be invalid by any court of competent jurisdiction, the invalidity of such provision shall not affect the validity of any other provision hereof, and all other such provisions shall continue unimpaired and in full force and effect.
- 10. **Transfer of Interest:** The Owner shall provide notice to the MDEQ and U.S. EPA of the Owner's intent to transfer any interest in the Mill Property, or any portion thereof, fourteen (14) days prior to consummating the conveyance. A conveyance of title, easement, or other interest in the Mill Property shall not be consummated by the Owner unless the Owner complies with the applicable provisions of Section 20116 of the NREPA. The Owner shall include in any instrument conveying any interest in any portion of the Mill Property, including but not limited to deeds, leases and mortgages, a notice which is in substantially the following form:

NOTICE: THE INTER	EST CONVEYED HEREBY IS SUBJECT TO A DECLARATION OF
ENVIRONMENTAL PI	ROTECTION EASEMENT AND DECLARATION OF RESTRICTIVE
	, 200_ RECORDED WITH THE ALLEGAN COUNTY REGISTER
of Deeds, Liber	

11. **Notices:** Any notice, demand, request, consent, approval, or communication that is required to be made or obtained under this instrument shall be made in writing and include a statement that the notice is being made pursuant to the requirements of this Environmental Protection Easement and Declaration of Restrictive Covenant, MDEQ Reference Number RC-RRD-201-05-001, and U.S. EPA Site No. 059B, and shall be served either personally or sent via first class mail, postage prepaid, as follows:

For U.S. EPA: Director

Superfund Division U.S. EPA Region 5 77 W. Jackson Blvd. SR-6J Chicago, Illinois 60604

With a copy to: Eileen L. Furey

Associate Regional Counsel

U.S. EPA Region 5

77 W. Jackson Blvd. C-14J Chicago, Illinois 60604

For the MDEQ: Director

Michigan Department of Environmental Quality

P.O. Box 30473

Lansing, Michigan 48909-7973

With a copy to: Suzanne D. Sonneborn

Assistant Attorney General

Environment, Natural Resources, and Agriculture Division

Michigan Department of Attorney General

525 W. Ottawa St.

Lansing, Michigan 48933

12. Authority to Execute Environmental Protection Easement and Declaration of **Restrictive Covenant.** The undersigned person executing this Environmental Protection Easement and Declaration of Restrictive Covenant is the Owner and represents and certifies that he or she is duly authorized and has been empowered to execute and deliver this Instrument.

IN WITNESS	WHEREOF, Plainw	ell Inc. has caused thi	s Environmental	Protection Easemen
and Declaration	on of Restrictive Cov	enant to be executed o	on this 14 day o	f
March	, 2005.			

PLAINWELL INC.

By: Name:

SVP -Chief Financial Officer Its:

STATE OF MINNESOTA COUNTY OF HENNEPIN

LIBER 2811 PAGE 600

Personally came before me this <u>U</u> day of <u>MyC</u>, 2005, the above-named Jeff Arnesen as Chief Financial Officer of Plainwell, Inc., to me known to be the person who executed the foregoing instrument and acknowledged the same.

Dence Arleen Woeiss Notary Public

Renee Arleen Weiss

[Print or type name]

Commissioned in County Hennepin

My Commission Expires: Jan 31.2010

This instrument was prepared by and after recording, should be returned to:

Pamela E. Barker Godfrey & Kahn, S.C. 780 North Water Street Milwaukee, WI 53202

EXHIBIT 1 LEGAL DESCRIPTION OF THE PLAINWELL MILL PROPERTY

P.P. 0355-020-001-10

PARCEL B-I: COMMENCING NORTH 58 DEGREES 23' WEST 171.82 RODS FROM THE EAST OUARTER POST OF SECTION 30; THENCE NORTH 31 DEGREES 37' EAST 640 FEET; THENCE NORTH 58 DEGREES 23' WEST 150 FEET; THENCE SOUTH 31 DEGREES 37' WEST 475 FEET; THENCE SOUTH 58 DEGREES 23' EAST 66 FEET; THENCE SOUTH 31 DEGREES 37' WEST 165 FEET TO CENTER OF HIGHWAY; THENCE SOUTH 58 DEGREES 23' EAST 84 FEET TO THE PLACE OF BEGINNING.

P.P. 0355-030-077-00

PARCEL B-2: COMMENCING AT A POINT NORTH 58 DEGREES 23' WEST 176.91 RODS FROM THE EAST 1/4 POST OF SECTION 30, TOWN 1 NORTH, RANGE 11 WEST; THENCE NORTH 31 DEGREES 37' EAST 165 FEET; THENCE NORTH 58 DEGREES 23' WEST 66 FEET; THENCE SOUTH 31 DEGREES 37' WEST 165 FEET; THENCE SOUTH 58 DEGREES 23' EAST 66 FEET TO THE PLACE OF BEGINNING.

P.P. 0355-030-077-10

PARCEL C-I: COMMENCING AT A POINT NORTH 58 DEGREES 23' WEST, 180.91 RODS FROM T~LE EAST 1/4 POST OF SECTION 30, TOWN 1 NORTH, RANGE 11 WEST THENCE NORTH 31 DEGREES 37' EAST 640 FEET; THENCE NORTH 58 DEGREES 23' WEST 312.4 FEET; THENCE SOUTH 28 DEGREES 17' WEST 641.3 FEET TO CENTER OF HIGHWAY; THENCE SOUTH 58 DEGREES 23' EAST 275 FEET TO SAID POINT OF BEGINNING, EXCEPTING AND RESERVING A STRIP OF LAND 183.3 FEET WIDE OFF THE WESTERLY SIDE THEREOF.

P.P. 0355-030-077-20

PARCEL C-2: PART OF THE NORTH 1/2 OF SECTION 30, TOWN 1 NORTH, RANGE 11 WEST, DESCRIBED AS FOLLOWS: THE EAST 91 2/3 FEET OF THE WEST 183 1/3 FEET OF THE FOLLOWING DESCRIBED PREMISES; COMMENCING AT A POINT NORTH 58 DEGREES 23' WEST 180.91 RODS FROM THE EAST I/4 POST OF SECTION 30, TOWN 1 NORTH, RANGE 11 WEST; THENCE NORTH 31 DEGREES 37' EAST 640.0 FEET; THENCE NORTH 58 DEGREES 23' WEST 312.4 FEET; THENCE SOUTH 28 DEGREES 17' WEST 641.3 FEET TO CENTER OF HIGHWAY; THENCE SOUTH 58 DEGREES 23' EAST 275 FEET TO SAID POINT OF BEGINNING.

P.P. 0355-030-077-30

PARCEL D: COMMENCING AT THE SOUTHWEST CORNER OF LOT 4, LASHER'S ADDITION TO THE VILLAGE (NOW CITY) OF PLAINWELL, THENCE WESTERLY ALONG THE NORTH LINE OF WEST ALLEGAN STREET 165 FEET; THENCE NORTHERLY 462 FEET; THENCE EASTERLY 165 FEET TO THE WEST LINE OF LASHER'S ADDITION; THENCE SOUTHERLY TO THE PLACE OF BEGINNING, BEING IN THE NORTHEAST 1/4 OF SECTION 30, TOWN 1 NORTH RANGE 11 WEST.

P.P. 0355-030-080-00

PARCELS 1, 2 AND 3: LOT 43 TO 48, INCLUSIVE, CORPORATION PLAT AND LOT 75, CORPORATION PLAT, EXCEPT THAT PART LYING WEST OF LOT 27 NORTHEASTERLY OF THE MILL RACE AND LOT 120, CORPORATION PLAT. ALSO LOTS 1-12 AND LOTS 49-59, WHITNEY ADDITION. ALSO LOTS 1-16 LASHERS ADDITION.

P.P. 0355-160-043-00

PARCEL 4: VACATED RIVER STREET LOCATED IN RIVERVIEW ADDITION, ALSO THAT PART OF MICHIGAN AVENUE, VACATED, LYING BETWEEN THE SOUTHERLY SIDE OF RIVER STREET AND NORTHERLY OF A LINE CONNECTING THE SOUTHERLY SIDE OF LOT 25, BLOCK 1, AND SOUTHERLY SIDE OF LOT 21, BLOCK 2, RIVERVIEW ADDITION, ALSO THAT PART OF PROSPECT AVENUE, VACATED, LYING BETWEEN THE SOUTHERLY SIDE OF RIVER STREET AND NORTHERLY OF SOUTHERLY EXTENSION OF SOUTHERLY LINE OF LOT 40, BLOCK I, RIVERVIEW ADDITION, ALSO LOTS 25 THRU 40, BLOCK 1, ALSO LOTS 16 THRU 30, BLOCK 2, RIVERVIEW ADDITION.

P.P. 0355-280-013-00

PARCEL 5: COMMENCING AT THE SOUTHWEST CORNER OF LOT 25, BLOCK 2, RIVERVIEW ADDITION; THENCE NORTHWESTERLY PARALLEL WITH ALLEGAN STREET 463 FEET; THENCE NORTH 31 DEGREES 32' EAST TO THE LEFT BANK OF KALAMAZOO RIVER; THENCE SOUTHERLY ON SAID RIVER BANK TO THE NORTHWEST CORNER OF RIVERVIEW ADDITION; THENCE SOUTH 31 DEGREES 37' WEST ALONG THE WEST LINE OF SAID ADDITION, 189 FEET TO POINT OF BEGINNING, SECTION 30, TOWN 1 NORTH, RANGE 11 WEST.

P.P. 0355-030-076-00

PARCEL 7: COMMENCING ON THE WEST LINE OF LASHER'S ADDITION 495 FEET ON SAID ADDITION LINE FROM THE CENTER LINE OF ALLEGAN STREET; THENCE NORTH 58 DEGREES 23' WEST 231 FEET; THENCE SOUTH 31 DEGREES 37' WEST 57.25 FEET; THENCE NORTH 58 DEGREES 23' WEST 99 FEET TO THE EAST LINE OF RIVERVIEW ADDITION: THENCE NORTH 31 DEGREES 37' EAST TO LEFT BANK OF THE KALAMAZOO RIVER; THENCE SOUTHEASTERLY ON SAID RIVER BANK TO THE NORTHWEST CORNER OF LOT 16, LASHER'S ADDITION; THENCE SOUTHWESTERLY TO BEGINNING. SECTION 30, TOWN 1 NORTH, RANGE 11 WEST.

PARCEL 7 WAS FORMERLY DESCRIBED AS COMMENCING AT THE SOUTHWEST CORNER OF LOT 16 OF LASHER'S ADDITION TO THE VILLAGE (NOW CITY) OF PLAINWELL, MICHIGAN, ACCORDING TO THE PLAT THEREOF OF RECORD AND ON

FILE IN THE OFFICE OF THE REGISTER OF DEEDS FOR SAID COUNTY, SAID POINT BEING 462 FEET NORTHERLY OF THE NORTH LINE OF ALLEGAN STREET:

THENCE WESTERLY 226.4 FEET TO A POINT 49S FEET NORTHERLY OF THE NORTH LINE OF ALLEGAN STREET, MEASURED ALONG A LINE PARALLEL WITH THE EAST LINE OF PROSPECT AVENUE, AS SHOWN ON THE PLAT OF RIVERVIEW ADDITION, ACCORDING TO THE PLAT THEREOF OF RECORD AND ON FILE IN THE OFFICE OF THE REGISTER OF DEEDS FOR SAID COUNTY: THENCE SOUTHERLY PARALLEL WITH THE EAST LINE OF PROSPECT AVENUE AS SHOWN ON THE PLAT OF SAID R.IVERVIEW ADDITION, TO A POLNT 437.25 FEET NORTHERLY OF THE NORTH LINE OF SAID ALLEGAN STREET, MEASURED ALONG A LINE PARALLEL WITH THE EAST LINE OF SAID PROSPECT AVENUE; THENCE WESTERLY 99 FEET TO A POINT 437.25 FEET NORTHERLY, AS MEASURED ALONG THE EASTERLY LINE OF SAID PROSPECT AVENUE, OF THE NORTH LINE OF ALLEGAN STREET AND ON THE EAST LINE OF SAID PROSPECT AVENUE; THENCE NORTHERLY ON THE EASTERLY LINE OF SAID PROSPECT AVENUE AND THE NORTHERLY EXTENSION THEREOF TO THE KALAMAZOO RIVER; THENCE SOUTHEASTERLY ALONG SAID RIVER TO THE NORTHWEST CORNER OF LOT 16 OF SAID LASHER'S ADDITION; THENCE ALONG THE WEST LINE OF SAID LOT 16 TO THE PLACE OF BEGINNING.

PARCEL B-1

COMMENCING NORTH 58°-23' WEST 171.82 RODS (2835.03 FEET) FROM THE EAST QUARTER POST OF SECTION 30; THENCE NORTH 31°-37' EAST 640 FEET; THENCE NORTH 58°-23' WEST 150 FEET; THENCE SOUTH 31°-37' WEST 475 FEET; THENCE SOUTH 58°-23' EAST 66 FEET; THENCE SOUTH 31°-37' WEST 165 FEET TO CENTER OF HIGHWAY; THENCE SOUTH 58°-23' EAST 84 FEET TO THE PLACE OF BEGINNING, CITY OF PLAINWELL.

PARCEL B-2

COMMENCING AT A POINT NORTH 58°-23' WEST 176.91 (2919.02 FEET) RODS FROM THE EAST 1/4 POST OF SECTION 30, TOWN 1 NORTH, RANGE 11 WEST; THENCE NORTH 31°-37' EAST 165 FEET; THENCE NORTH 58°-23' WEST 66 FEET; THENCE SOUTH 31°-37' WEST 165 FEET; THENCE SOUTH 58°-23' EAST 66 FEET TO THE PLACE OF BEGINNING.

LEGEND:

- O 1/2" IRON SET
- CORNER FOUND
- R "RECORDED AS"

BEARING SOURCE: PRIOR CONVEYANCES

LOCATION: NORTH 1/2 SECTION 30 T 1/N -R 1/W.

CITY OF PLAINWELLTWP., ALLEGAN CO., MICHIGAN.

CERTIFIED TO: SIMPSON PLAINWELL PAPER CO.

BY: Joy DATE: 10-18-96

BERYL M. JONES, PLS MI# 23514 DISKUSO"96306W"

WIGHTMAN MOORED, INC

Land Surveying and Consulting Engineering
114 CHESTNUT ST. ALLEGAN, MI 49010
(616) 673—8465 FAX 873—5484

LIBER 2811 PAGE 605

PARCEL C-1

COMMENCING AT A POINT NORTH 58°-23' WEST, 180.91 RODS (2985.02 FEET) FROM THE EAST 1/4 POST OF SECTION 30, TOWN 1 NORTH, RANGE 11 WEST, THENCE NORTH 31°-37 EAST 640 FEET; THENCE NORTH 58°-23' WEST 312.4 FEET; THENCE SOUTH 28°-17 WEST 641.3 FEET TO CENTER OF HIGHWAY; THENCE SOUTH 58°-23' EAST 275 FEET TO SAID POINT OF BEGINNING. EXCEPTING AND RESERVING A STRIP OF LAND 183.3 FEET WIDE OFF THE WESTERLY SIDE THEREOF.

PARCEL C-2

PART OF THE NORTH 1/2 OF SECTION 30, TOWN 1 NORTH, RANGE 11 WEST, DESCRIBED AS FOLLOWS: THE EAST 91 2/3 FEET (91.66 FEET) OF THE WEST 183 1/3 FEET (183.33 FEET) OF THE FOLLOWING DESCRIBED PREMISES; COMMENCING AT A POINT NORTH 58°-23' WEST 180.91 RODS FROM THE EAST 1/4 POST OF SECTION 10, TOWN 1 NORTH, RANGE 11 WEST; THENCE NORTH 31°-37 EAST 640.0 FEET; THENCE NORTH 58°-23' WEST 312.4 FEET; THENCE SOUTH 28°-17 WEST 641.3 FEET TO CENTER OF HIGHWAY; THENCE SOUTH 58°-23' EAST 275 FEET TO SAID POINT OF BEGINNING.

PARCEL 5

COMMENCING AT THE SOUTHWEST CORNER OF LOT 25, BLOCK 2, RIVERVIEW ADDITION; THENCE NORTHWESTERLY PARAILLEL WITH ALLEGAN STREET 463 FEET; THENCE NORTH 31°-32' EAST TO THE LEFT BANK OF KALAMAZOO RIVER; THENCE SOUTHERLY ON SAID RIVER BANK TO THE NORTHWEST CORNER OF RIVERVIEW ADDITION; THENCE SOUTH 31°-37" WEST ALONG THE WEST LINE OF SAID ADDITION, 189 FEET TO POINT OF BEGINNING. SECTION 30, TOWN 1 NORTH, RANGE 11 WEST.

SURVEYOR'S CERTIFICATE

PARCEL 4
VACATED RIVER STREET LOCATED IN RIVERVIEW ADDITION, ALSO THAT PART OF
MICHIGAN AVENUE, VACATED, LYING BETWEEN THE SOUTHERLY SIDE OF RIVER STREET
AND NORTHERLY OF A LINE CONNECTING THE SOUTHERLY SIDE OF LOTS 25, BLOCK 1, AND
SOUTHERLY SIDE OF LOT 21. BLOCK 2, RIVERVIEW ADDITION, ALSO THAT PART OF
PROSPECT AVENUE, VACATED, LYING BETWEEN THE SOUTHERLY SIDE OF RIVER STREET
AND NORTHERLY OF SOUTHERLY EXTENSION OF SOUTHERLY LINE OF LOT 40, BLOCK 1,
RIVERVIEW ADDITION, ALSO LOTS 25 THRU 40, BLOCK 1, ALSO LOTS 16 THRU 30, BLOCK 2,
RIVERVIEW ADDITION.

LEGEND:

O - 1/2" IRON SET

CÓRNER FOUND

R - "RECORDED AS"

BEARING SOURCE: RIVERVIEW ADDITION

LOCATION: NORTH 1/2, SECTION 30, T/N -R/1/W.,

CITY OF PLAINWELL TWP., BLLEGAN CO., MICHIGAN.

CERTIFIED TO: SIMPSON PLAINWELL PAPER CO.

BY: DATE: 10/18/96
BERYL M. JONES, PLS MI# 23514 \$15K#50"96306W

Beryl M.
Jones
SURVEYOR
No. 23514
O
AND SURVEYOR

WIGHTMAN MOORED, INC.

Lond Sursying and Computing Engineering
114 CHESTNUT ST. ALLEGAN, MI 49010
(618) 873-8485 FAX 873-8464

~JRVEYOR'S CERTIFICATE

LIBER 2811

PAGE 609

COMMENCING ON THE WEST LINE OF LASHER'S ADDITION 495 FEET ON SAID ADDITION LINE FROM THE CENTER LINE OF ALLEGAN STREET; THENCE NORTH 58°-23' WEST 231 FEET; THENCE SOUTH 31°-37 WEST 57.25 FEET; THENCE NORTH 58°-23' WEST 99 FEET TO THE EAST LINE OF RIVERVIEW ADDITION; THENCE NORTH 31°-37 EAST TO LEFT BANK OF THE KALAMAZOO RIVER, THENCE SOUTHEASTERLY ON SAID RIVER BANK TO THE NORTHWEST CORNER OF LOT 16, LASHER'S ADDITION, THENCE SOUTHWESTERLY TO BEGINNING. SECTION 30, TOWN I NORTH, RANGE II WEST.

- 1/2" IRON SET
- CORNER FOUND
- "RECORDED AS"

BEARING SOURCE: LASHER'S ADDITION

LOCATION: NORTH 1/Z, SECTION 30, TIN-RIIW, CITY OF PLAINWELL TWP., ALLEGAN CO., MICHIGAN.

CERTIFIED TO: SIMPSON PLAINWELL PAPER CO.

I HEREBY CERTIFY THAT I HAVE SURVEYED AND MAPPED THE LAND ABOVE PLATTED AND/OR DESCRIBED ON THIS DATE, AND THAT THE RATIO OF CLOSURE ON THE UNADJUSTED FIELD OBSERVATIONS WAS 10,000', AND THAT ALL OF THE REQUIREMENTS OF P.A. 132, 1970 HAVE BEEN COMPLIED WITH.

BERYL M. JONES, PL6 MI# 23514 DISK#50"96706W

WIGHTMAN MOORED, INC.

114 CHESTNUT ST. ALLEGAN, MI 49010 (616) 673-8465 FAX 673-5464

EXHIBIT 2

[NOT INCLUDED HORE
IN FIVE-YEAR LONEW
DUE TO SIZE.]

Appendix A Newspaper Public Notices

Obama leads slightly in Michigan

LANSING — President Ba-rack Obama is slightly leading challenger Mitt Romney in the latest poll of likely Michigan

******* ELECTION 2012

Obama in droves, King said.

**Likeability: Fifty-two percent of respondents had a favorable impression of Obama, and 44 percent had an unfavorable impression. That is about the same as in March, when he had a 53 percent favorability rating, A question on Romney's likeability was not asked.

**Job approval: Fifty percent approved of the job Obama is doing, while 46 percent disapproved. Those numbers are similar to six months ago, when he had a 50 percent approval rating.

**How's the race in your area? Romney was up in the Flint-Saginaw-Bay City market (50-38). Cadillac-Traverse City-Sault Ste. Marie (44-41) and Upper Peninsula-northern Michigan (50-44). Obama fared better in metropolitan Detroit (32-39), Grand Rapids-Kalamazoo-West Michigan (46-44) and Lansing-Mid-Michigan (47-40).

Poll: Stabenow has edge on Hoekstra in U.S. Senate race

On Hoekstra in U.S. Senate race

By TIM MARTIN
THARTHAGMUR/CDM

LANSING — A statewide poil
LANSING — A statewide poil
Shows incumbent Democratic
U.S. Sen. Debbie Stabenow
with an edge on Republican
challenger Pete Hoekstra in
Michigan's U.S. Senate race.
The Marketing Resource
Group party shows Stabenow with a five-point
and Hoekstra with 40.2 percent of the
respondents said they were
decided or didn't know whom
they would vote for if the election were right now, or they
would vote for if the election were right now, or they
fefused to answer.
The statewide poll of 600
likely voters by the Lansing
based firm was conducted Sept.
10-15 using live telephone inter
10-15 using live telephone live

EPA Begins Review of Allied Paper/Portage Creek/Kalamazoo River Superfund Site Kalamazoo, Allegan and Douglas counties, Michigan

U.S. Environmental Protection Agency is conducting a five-year review of the Allied Paper/Portage Creek/Kalamazoo River Superfund Site extending from Kalamazoo, Mich. to Lake Michigan near Saugatuck. The Superfund law requires regular checkups of sites that have been cleaned up – with waste managed on-site – to make sure the cleanup continues to protect people and the environment. This is the second five-year review of

EPA's cleanup of PCB contamination includes removal of contaminated soil and sediment in portions of the Kalamazoo River and Portage Creek, reviewing Georgia-Pacific plans for future Kalamazoo River cleanup, the consolidation and capping the Willow Boulevard/A-site landfill, the 12th Street landfill, the King Highway landfill, and the completion of the Remedial Investigation/Feasibility Studies at both the Allied Landfill and

EPA expects to complete the review by October 18th. More site information is available at the following Kalamazoo Public Library

Allegan Public Library 331 Hubbard St. Allegan

315 S. Rose St. Kalamazoo

Saugatuck-Douglas Library 10 Mixer St. Douglas

Charles Ransom Library 180 S. Sherwood

Otsego District Library 219 S. Farmer St. Otsego

Waldo Library Western Michigan University 1903 W. Michigan Ave.

The five-year review is an opportunity for you to tell EPA about site conditions and any concerns you have.

Community Involvement Specialist
EPA Community Involvement and Outreach Section (SI-7J)
77 W. Jackson Blvd. Chicago, IL 60604 312-886-4360

Toll-free: 800-621-8431, Ext. 64360, weekdays 10 a.m. – 5:30 p.m.

James Saric Remedial Project Manager EPA Superfund Division (SR-6J) 77 W. Jackson Blvd. 77 W. Jackson Blvd. Chicago, IL 60604 312-886-0992 Toll-free: 800-621-8431, Ext. 66151, weekdays 10 a.m. – 5:30 p.m.

You may also call Region 5 toll-free at 800-621-8431, 8:30 a.m. to 4:30 p.m., weekdays.

SCHOLAR LPDATE

Spring Arbor University

Spring Arbor University has announced a list of May 2012 graduates. Allegan County students include: Allegan Eugenia Jackson-Kling; Otsego—Theresa Waller; Plainwell—Debra Swanson; and Wayland—

Michigan Technological University

Michigan Technological University
Michigan Technological University has announced a
list of spring 2012 graduates. Allegan Commended
Beduna. Schastian Fryer, Jessica Hodgson, Dustin
Howard, Ashley Melnityre, Taylor McKinstry, Emily Oele,
Seth Osborn and Andrew Smith; and Wayland—Nicholas
Brott, Angela Case, Patrick Chandler, Nathan Pesch and
Katherine Ragan.

DePaul University

DePaul University has announced a list of its summer 2012 graduates. Allegan County students include: Douglas—Elizabeth Depree; and Otsego—Emily Hampsten.

Rinkus

Jerod Rinkus of Saugatuck graduated in May 2012 from Clarion University with a master's degree in library science.

David Lyon of Saugatuck recently graduated from Grand Valley State University with a master's degree in

Ferris State University

Ferris State University

Ferris State University has announced a list of its spring 2012 graduates. Allegan County students include: Allegan—Kelsey Kiella; Dorr—Bryan Andres, Jamini Bishop, Cody Commons, Patrick Damweld, Nathan Darling, Daniel Koperski, Cameron Lear, Andrew Steffes and Jeffrey Talsma; Fennville—Brian Dell; Hamilton—Karen Slenk: Martin—Samuel Westendorp; Otsego—Kristy Bates, Dennis Goodenough and Jerry Westhoff; Plainwell—Sarah Crookston and Gayle Evans; Pullman—Brooke Blake and Brandon Rhodes; Saugatuck—Katelyn Bekken, Tristan Sisbach and Rebecca Wheeler; and Wayland—Janel Bierlein. Matthew Meindertsma and Matthew VanDuyn.

The university also announced a list of students it has placed on the spring 2012 honors list. To be eligible for the list, students must maintain a 35 grade point average. Allegan County students include: Allegan—Bud Kibbyy, Brian Salisbury, Joshua Vanbruggen and Gage Waanders;

Allegan County students include: Allegan—Bud Kibby, Brian Salisbury, Joshua Vambruggen sund Gage Waanders, Dorr- Bryan Andres, Cody Commons, Kimberly Henney, Kelly Lahuis, Colton Lain, Jay Lenhart, Mika Meginnis, Zachary Rewa, Eric Rummelt, Ashley Schaendorf, Thomas Snyder, Natalic Weber and June Wycoff, Fennville—Brian Dell; Hamilton—Derek Brouwer, Staeey Klein, Jayne Klies and Rachel Ward; Hopkins—Emily Barnhandt: Otsego—Kristy Bates, Mallory Bohl and Cody Bonnell: Plainwell—Lyan Bingham, Sarah Crookston, Jessica Soufiland, Justin Tunisma and Arthur Ueck, Pullman—Brooke Blake and Brandon Rhodes; Saugatuck—Allison Jenkins and Rebecca Wheeler, Shelbyville—Megan Staple and Sarah Staple; and Wayland—Janet Bierkin, Lindsey Post, Michael Ruszkowski, Kristen Stahl, Tess Toholic and Samaniha Watson.

Amanda Stone of Hopkins has been named to the Kendall College of Art and Design of Ferris State University spring 2012 president's list. She has also accepted a membership in The National Society of Collegiate Scholars.

Joseph J. Sakal of Allegan has been named to University of Northwestern Ohio June 2012 dean's list in the College of Applied Technologies. To be eligible for the list, students must amintain a 3.5 grade point average. He is the son of John and Sharon Sakal of Allegan.

Keara Kilbane of Hopkins was awarded a scholarship

at Denison University.

She is a member of the class of 2016 and received the Denison Founders Scholarship, which recognizes academical mental demic achievement, leadership and personal merit.

Spelling bee at fair recognizes winners

Twenty-eight Allegan County third-, fourth- and fifth-grade students from six schools participated in the 33rd annual Jewett School Spelling Bee. The competition was

The competition was Saturday, Sept. 15 in the his-toric Jewett School in the puters will be added to the

piners will be added to the student use computers. Elementary schools will also see the addition of 90 netbooks. Part of the goal behind this purchase is to pre-pare for the Smarter Balanced Test.

The test expected to replace the MEAP in two years; stu-dents are required to take parts of the test online.

Otsego Elementary Technology Curriculum is also expanding to include kindergarten through second

Allegan County Historical Society volunteers, who know about the history of schools in the county.

The winners included third grade: first-place Jose Delgado from Fennville Elementary School, second-place Annabella Density of the Contestant was awarded a participation cerustration of the Contestant was awarded a participation of the Contestant was awarded a participation of the Contestant was awarded a participation of the Contestant was awarded a

given Spelling Bee meda compliments of the Michiga Association of Retire School Personnel. Th Allegan County Fair boar contributes free tickets to th participants and their fami lies.

EPA Begins Review of Allied Paper/Portage Creek/Kalamazoo River Superfund Site Kalamazoo, Allegan and Douglas counties, Michigan

U.S. Environmental Protection Agency is conducting a five-year review of the Allied Paper/Portage Creek/Kalamazoo River Superfund Site extending from Kalamazoo, Mich. to Lake Michigan near Sungatuck. The Superfund law requires regular checkups of sites that have been cleaned up – with waste managed on-siteto make sure the cleanup continues to protect people and the environment. This is the second five-year review of

EPA's cleanup of PCB contamination includes removal of contaminated soil and sediment in portions of the Kalamazoo River and Portage Creek, reviewing Georgia-Pacific plans for future Kalamazoo River cleanup, the consolidation and capping the Willow Boulevard/A-site landfill, the 12th Street landfill, the King Highway landfill, and the completion of the Remedial Investigation/Feasibility Studies at both the Allied Landfill and Plainwell Mill.

EPA expects to complete the review by October 18th. More site information is available at the following libraries:

Allegan Public Library 331 Hubbard St. Allegan

Charles Ransom Library 180 S. Sherwood Plainwell

Kalamazoo Public Library 315 S. Rose St. Kalamazoo

Otsego District Library 219 S. Farmer St. Otsego

Saugatuck-Douglas Library 10 Mixer St. Douglas

Waldo Library Western Michigan University 1903 W. Michigan Ave.

The five-year review is an opportunity for you to tell EPA about site conditions and any concerns you have. Contact:

Don de Blasio Community Involvement Specialist EPA Community Involvement and Outreach Section (SI-7J) 77 W. Jackson Blvd. Chicago, IL 60604

312-886-4360 Toll-free: 800-621-8431, Ext. 64360, weekdays 10 a.m. - 5:30 p.m.

James Saric Remedial Project Manager EPA Superfund Division (SR-6J) 77 W. Jackson Blvd. Chicago, IL 60604 312-886-0992 Toll-free: 800-621-8431 Ext. 66151, weekdays 10 a.m. - 5:30 p.m.

You may also call Region 5 toll-free at 800-621-8431, 8:30 a.m. to 4:30 p.m., weekdays.

Talk | from Page 4-

paper, or other documents that would suggest what the man was winching. The best guess was winching. The best guess is the pipe as the photo was taken approximately at the same time as the other photo and is only about four buildings south of the Patterson-Clement building.

The three photos came to the Union Enterprise as a donated collection of glass negatives.

negatives.

negatives.

The Sangatuck/Douglas

Historical Society made a

DVD of the negatives and

Stamm provided the research

to place times and names with

as many of the photographs as

The rest of the photographs can be viewed at the Charles A. Ransom District Library.

Today's Construction
As for the construction
going on today, Plainwell's
economic developer Emilie
Schada has a detailed description of the construction going on in Plainwell. According to the email letter she sends out, the Mill Race bridge will be completed this week, also the water and sewer project is nearly completed. Projects still ongoing include the painting of the Mtion of the construction going

SCHLONMAKER.

the road paving.

Bridge Street will close from Park Street to M-89 once the Mill Race bridge is

the Mill Race bridge is reopened.

Main Street's northbound lane will be closed starting at Chart Street, but the southbound portion of Main Street will remain open.

Phase One of construction is nearly completed and was scheduled to be completed by October 2012.

October, 2012.
Phase Two is scheduled to be completed by July, 2013.
For more information, go to www.plainwell.org.

A work crew digs a ditch for some water pipes in front of the Patterson and Clement store which today is the location for Dancing Dogs Quilt Shop.

Deadline set for home heating credit

MONROE—The deadline to apply for Michigan's Home Heating Credit to assist low-income individuals with winter energy bills is Sept. 30.

"Winter heating bills aren't that far down the road," said Michigan Gas Utilities' manager of external affairs P.J. Livernois.

"Hopefully we'll have

another relatively mild winter like last year. That would help hold down energy costs for all of our customers."

The Home Heating Credit is funded by the federal Low-Income Home Energy Assis-tance Program grant. Eligibility is based on the number of tax exemptions and the maximum annual income per household. Special exemptions are available for people with disabilities and those age 65 and older.

To apply, obtain a form from the Michigan Department of Treasury. Website, www.michigan-gov/taxes, or call (517) 636-4486.

EPA Begins Review of Allled Paper/Portage Creek/Kalamazoo River Superfund Site Kalamazoo, Allegan and Douglas counties, Michigan

U.S. Environmental Protection Agency is conducting a five-year review of the Allied Paper/Portage Creek/Kalamazoo River Superfund Site extending from Kalamazoo, Mich, to Lake Michigan near Saugatuck. The Superfund law requires regular checkups of sites that have been cleaned up - with waste managed on-site to make sure the cleanup continues to protect people and the environment. This is the second five-year review of this site.

EPA's cleanup of PCB contamination includes removal of contaminated soil and sediment in portions of the Kalamazoo River and Portage Creek, reviewing Georgia-Pacific plans for future Kalamazoo River cleanup, the consolidation and capping the Willow Boulevard/A-site landfill, the 12th Street landfill, the King Highway landfill, and the completion of the Remedial Investigation/Feasibility Studies at both the Allied Landfill and

EPA expects to complete the review by October 18th. More site information is available at the following libraries:

Allegan Public Library 331 Hubbard St. Allegan

Charles Ransom Library 180 S. Sherwood Plainwell

Kalamazoo Public Library 315 S. Rose St.

Otsego District Library 219 S. Farmer St. Otsego

Saugatuck-Douglas Library 10 Mixer St. Douglas

Waldo Library Western Michigan University 1903 W. Michigan Ave.

The five-year review is an opportunity for you to tell EPA about site conditions and any concerns you have. Contact.

Don de Blasio

Community Involvement Specialist EPA Community Involvement and Outreach Section (\$1-71) 77 W. Jackson Blyd. Chicago, IL 606/14 312-886-4360 Toll-free: 800-621-8431, Ext. 64360, weekdays 10 a.m. - 5:30 p.m.

Remedial Project Manager EPA Superfund Division (SR-6J) 77 W. Jackson Blvd. Chicago, IL 60604 Toll-free: 800-621-8431, Ext. 66151, weekdays 10 a.m. – 5:30 p.m.

You may also call Region 5 toll-free at 800-621-8431, 8:30 a.m. to 4:30 p.m., weekdays,

Area vies for national Prettiest Painted Places award

BY SCOTT SULLIVAN

BY SCOTT SULLIVAN
EDITOR
Saugatuck-Douglas, long home
of artist painters, does OK by decorative painters too.
The community is one of eight
Michigan nominees in the Paint
Quality Institute's Prettiest Painted
Places in the USA competition.
The contest, meant to show how

The contest, meant to show how an attractive paint color scheme can

enhance the curb appeal of any enhance the curb appeal of any structure's — and by extension, community's — extenior, is backed by Dow Corp. in cooperation with The Wall Street Journal, The New York Times, HGTV and USA Today, Saugatuck-Douglas joins Bay-View, Frankenmuth, Grand Rapids, Howard Ciry, Petoskey, Traverse City and the Village of Constantine vying with nearly 200 nominees

from other states for regional and national honors, according to Saugatuck-Douglas Convention & Visitors Bureau executive director Felicia Fairchild Judges with expertise in color selection, exterior painting and home improvement will review the entries, conduct additional research and make selected site visits. Finalists will be announced in late

September, and the nation's 12 "Prettiest Painted Places" will be

revealed in mid-October.

Twenty-one photos of area homes and businesses were selected and submitted for the contest, Fairchild

The Paint Quality Institute has conducted this competition twice before, most recently in 2000. "We feel there is no better way to

demonstrate the importance of exterior paint color than to focus on these beautiful real-world communi

these beautiful real-world communi-ties that take so much pride in their appearance," said FQI paint and color expert Debbie Zimmer. Nominees range from well-known-places such as Cape Cod, Mass., and Napa, Calif., to less-known sites such as Vashon-Maury Island, Wash., and Bell Buckle, Tenn.

Festival from Page 1-

Michigan Showcase, conducted seminars, provided speaking panels and post-film question-and-answer sessions with casts and crews

But meeting budgets, plus finding venues in a town that does not have a movie the-ater, has become more diffi-cult, the WFF founder said.

The festival in 2010 cost the nonprofit more than \$250,000 to operate, according to the most recent Internal Revenue Service documents available.

documents available.

Movic tickets sold and fees
brought in \$164.654. Contributions and grants accounted
for \$95.275. leaving organizers with \$9.892.

"That's not much to get us
started on the next year's festival." Del'vec said. Then
came a third-week of-June
scheduling conflict leaving
organizers unable to use the
Saugatuck Center for the
Arts, a matter Del'ree called

Sangatuck Center for the Arts, a matter DePree called "spirit breaking."
"We have a busy schedule and prior commitments," said SCA executive director Kristin Armstrong. "It helps us, if something changes, we know and can work things out

in advance. Still, we're only one of their smaller venues. "The SCA loves hosting the festival and hope we can do so again," she said. WFF organizers announced Sept. 4 they would take appli-cations through Sept. 14 from other west Michigan cities to host the festival. "Our mission has always

host the festival.

Our mission has always been for Waterfront to economically and artistically benefit the entire region, as well as to showcase its scenic beauty and wonderful way of life," said DePree.

"We're not ruling out Saugatuck for 2013; we're isst opening up the possibili-

Sauganick in 2013, we so is so

again," he said.
St. Joseph, with Walsh saying cost concerns and the appearance that city would be taking the event from Saugatuck, chose not to apply. South Haven city manager Brian Dissette blogged Sept. 7 that his city was seeking the festival.

MLive.com reported Sept. 18 that Grand Haven's city

council had discussed the festival, with some members concerned a commitment might only be one year.

DePree outlined his board's

issues in a Sopt. 8 cmail to Saugathack city manager Kirk Harrier and Mayor Jane Verplank.
"We have been unable to

"We have been unable to attract enough sponsor dollars to cover all the costs of holding the festival in Sangatuck." he stated. "It is very costly to create temporary theaters each year." It was spirit breaking to lose the Sangatuck Center for the Arts when WFF was a catalyst for the conversion of

for the Arts when WFF was a catalyst for the conversion of Rich's Pie Factory (into the SCA facility) 12 years ago," DePree continued. "We have been unable to come to a resolution with SCA administrators to use any of the community center for WFF.
"The festival has been running in Sansanuck on a shoe-

ning in Sanganuck on a shoe-string budget without enough regional sponsorships to maintain the nationally-rec-ognized festival at a level that

if needs to be operating.
"These major reasons (along with several other

minor reasons) have resulted in widespread volunteer fatigue for repeating the event each year exclusively in Saugatuck. If you have any ideas or solutions on how to resolve these issues, please lef us know.

"WFE volunteers have any service options, seeing that the non-profit organization is now in a red zone.

"If there is enough community entry that we, as a community, can solve the issues? They are

around west Michigan is the only path we see to survival," the founder said.

DePree told Harrier in an email Sept. 20, "We are not demanding that tax dollars be allocated toward WFF but rather are asking for more assistance.

"Several other communities met the Sept. 14 proposal deadline and are offering spe-cific solutions of how the WFF could take place in their town. Community leaders, merchants, business organiza-tions and residents as cells. merchants, business organiza-tions and residents are rally-ing together fite help with fundamental pourceship, ad successing sponership, ad successing sponership, ad successing sponership and the wholl be directed the

please let us know.

"WFF volunteers have put in an enormous amount of blood, sweat, lears and years and don't want to call it quits. As it currently stands, moving around west Michigan is the only path we see to survival," the founder said.

DePrec tolar

"Both of my sisters live in Sauganuck, my house is just 10 minutes outside of 10 minutes outside of Saugatuck, and approximate-ly 10 percent of the WFF weekend event volunteers live in Saugatuck. So we would of course like for it to be possible to make this work again in Saugatuck," the festival founder said.

New Hours New Menu Including VEGETARIAN, GLUTEN-FREE, VEGAN ... (and steaks, fish, pasta ...)

irll Koom CASUAL FOOD & DRINKS

DINNER from 5:00 TUES. thru SATURDAY'S

Clearbrook Star on the nor edge of Saugatuck www.clearbrookdfring.c

9pm-10pm (must be in line by 10pm)

South Haven Family Campground 03403 64th Street, South Haven, MI 49090 www.facebook.com/TerrorInThePark

Coming up at the SCA:

Kelly Carey

The Loving Story
OCT 2 | 7:00 PM | \$10

EPA Begins Review of Allied Paper/Portage Creek/Kalamazoo River Superfund Site Kalamazoo, Allegan and Douglas counties, Michigan

U.S. Environmental Protection Agency is conducting a five-year review of the Allied Paper/Portage Creek/Kalamazoo River Superfund Site extending from Kalamazoo, Mich. to Lake Michigan near Saugatuck. The Superfund law requires regular checkups of sites that have been cleaned up - with waste managed on-site to make sure the cleanup continues to protect people and the environment. This is the second five-year review of

EPA's cleanup of PCB contamination includes removal of contaminated soil and sediment in portions of the Kalamazoo River and Portage Creek, reviewing Georgia-Pacific plans for future Kalamazoo River cleanup, the consolidation and capping the Willow Boulevard/A-site landfill, the 12th Street landfill, the King Highway landfill, and the completion of the Remedial Investigation/Feasibility Studies at both the Allied Landfill and Plainwell Mill.

EPA expects to complete the review by October 18th. More site information is available at the following

Allegan Public Library 331 Hubbard St. Allegan

Charles Ransom Library 180 S. Sherwood Plainwell

Kalamazoo Public Library 315 S. Rose St. Kalamazoo

Otsego District Library 219 S. Farmer St. Otsego

Saugatuck-Douglas Library 10 Mixer St. Douglas

Waldo Library Western Michigan University 1903 W. Michigan Ave.

The five-year review is an opportunity for you to tell EPA about site conditions and any concerns you have.

Don de Blasio Community Involvement Specialist
EPA Community Involvement and Outreach Section (SI-7I) 77 W. Jackson Blvd. Chicago, IL 60604 312-886-4360 Toll-free: 800-621-8431. Ext. 64360, weekdays 10 a.m. - 5:30 p.m.

James Sarie Remedial Project Manager EPA Superfund Division (SR-6J) 77 W. Jackson Blvd. Chicago, IL 60604 312-886-0992 Toll-free: 800-621-8431, Ext. 66151, weekdays 10 a.m. - 5:30 p.m.

You may also call Region 5 toll-free at 800-621-8431, 8:30 a.m. to 4:30 p.m., weekdays.

Appendix B

List of Documents Reviewed for the Five-Year Review

This Five-Year Review consisted of a review of the following relevant documents.

For the Willow Boulevard/A-Site Landfill OU2:

- Remedial Investigation/Focused Feasibility Study Report, Willow Boulevard/A-Site Landfill Operable Unit 2, Kalamazoo, Michigan, Allied Paper, Inc., Portage Creek, Kalamazoo River Superfund Site, November 2004;
- Record of Decision for the Willow Boulevard/A-Site Landfill OU2 of the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, City of Kalamazoo, Michigan, September 2006;
- Final (Revised) Baseline Ecological Risk Assessment for the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, April 2003;
- Final (Revised) Baseline Human Health Risk Assessment for the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, May 2003;
- Final Remedial Design Report for the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, Willow Boulevard/A-Site Landfill, Operable Unit 2, April 27, 2011;
- Final Remedial Action Work Plan for the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, Willow Boulevard/A-Site Landfill, Operable Unit 2, April 28, 2011; and
- Declaration of Restrictions and Covenants and Environmental Protection Easements July 22, 2010.

For the King Highway Landfill OU3:

- Record of Decision for the King Highway Landfill Operable Unit 3 of the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, City of Kalamazoo, Michigan, February 1998;
- Final Report for Completion of Construction Volume 1 of 9, King Highway Landfill Operable Unit 3 and Five Former Georgia-Pacific Lagoons, May 2004;
- Consent Decree for the Design and Implementation Of Certain Response Action At Operable Unit #4 and the Plainwell Inc. Mill Property of the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, February 15, 2005:
- Administrative Order by Consent for Response Activity at the King Highway Landfill-OU3, MDEQ Reference No. AOC-ERD-99-010, February 2000;

- Remedial Investigation Report, King Highway Landfill Operable Unit, July 1994;
- Post-Closure Operation and Maintenance Plan, King Highway Landfill Operable Unit of the Allied Paper, Inc/Portage Creek/Kalamazoo River Superfund Site, draft Final June 2004:
- Appendix J to the Final Report for Completion of Construction, King Highway Landfill Operable Unit 3 and Five Former Georgia-Pacific Lagoons, May 2004;
- Landfill Gas Monitoring Plan, King Highway Landfill Operable Unit, June 2002;
- Risk Assessment, King Highway Landfill Operable Unit, Allied Paper, Inc/Portage Creek/Kalamazoo River Superfund Site, August 1994;
- Technical Memorandum 6, King Highway Landfill Operable Unit, Allied Paper, Inc/Portage Creek/Kalamazoo River Superfund Site, March 1994;
- Institutional Control Study Report, King Highway Landfill Operable Unit 3 and Five Former Georgia-Pacific Corporation Mill Lagoons, September 2007; and
- Georgia-Pacific LLC Kalamazoo Mill Property Sampling Plan for Area Northwest of Former Mill Lagoon 1. November 2008.

For the 12th Street Landfill OU4:

- Consent Decree for the Design and Implementation Of Certain Response Action At Operable Unit #4 And The Plainwell Inc. Mill Property Of The Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, December 2004;
- Record of Decision for the 12th Street Landfill Operable Unit 4 of the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, City of Kalamazoo, Michigan, September 2001;
- Remedial Investigation/Feasibility Study Technical Memorandum 8, 12th Street Landfill Operable Unit, Plainwell, Michigan, Allied Paper, Inc., Portage Creek, Kalamazoo River Superfund Site, May 31, 1994;
- Final Remedial Design Report for the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, 12th Street Landfill, Operable Unit 4, March 2010;
- Final Remedial Action Work Plan for the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, 12th Street Landfill, Operable Unit 4, April 9, 2010;
- October 2011 Quarterly Groundwater Sampling Results, 12th Street Landfill, Operable Unit 4, Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, January 2012;

- April 2012 Quarterly Groundwater Sampling Results, 12th Street Landfill, Operable Unit 4, Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, July 2012;
- Declaration of Restrictions and Covenants and Environmental ProtectionEasements, March 25, 2005; and
- Amendment to Declaration of Restrictions and Covenants and Environmental Protection Easements, June 12, 2012.

Appendix C List of Data Reviewed for the Five-Year Review

This Five-Year Review consisted of a review of the following relevant data.

- King Highway Landfill Operable Unit Hydrogeological Monitoring Plan, Final September 2002;
- Attachment B, 1998 Groundwater Monitoring Reports, King Highway Landfill Operable Unit Hydrogeological Monitoring Plan;
- Attachment C, 2001 Groundwater Monitoring Reports, King Highway Landfill Operable Unit Hydrogeological Monitoring Plan;
- Attachment F to the 1998 King Highway Landfill Operable Unit Hydrogeological Monitoring Plan, Draft July 1998;
- Post-Closure Groundwater Sampling Analytical Results from 1993-2007, for the King Highway Landfill Operable Unit 3 of the Allied Paper Inc./Portage Creek/Kalamazoo River Superfund Site, transmitted via e-mail on September 10, 2007, by Pat McQuire with Georgia-Pacific;
- Draft Final King Highway Landfill Operable Unit 3 and Five Former Georgia-Pacific Lagoons, Final Report for Completion of Construction, September 2003;
- Final (Revised) Baseline Ecological Risk Assessment for the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, April 2003; and
- Final (Revised) Baseline Human Health Risk Assessment for the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site, May 2003.
- King Highway Landfill OU3 Proposed modification to the HMP, February 2011
- King Highway Landfill IOU3 Pore water sampling plan 2012
- Stressed vegetation and landfill subsidence investigation plan, 2012
- King Highway Landfill 2003 to 2012 Post-Closure Landfill Inspection Forms
- Monthly progress reports for OU2, OU3 and OU4
- OU3 and OU4 Quarterly Landfill gas monitoring reports
- OU3 and OU4 Groundwater quality monitoring reports
- Emergency Response Plan Documentation Report for Former Plainwell Paper Mill Banks, February 2009; and
- Draft Remedial Investigation Report for Former Plainwell, Inc. Mill Property, June 2011.